See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/mistral-7b-instruct-v0.3
bf16: true
chat_template: llama3
data_processes: 8
dataset_prepared_path: null
datasets:
- data_files:
- 995ce5e788bf78d3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/995ce5e788bf78d3_train_data.json
type:
field_instruction: idiom
field_output: sentence
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: fedovtt/feda7fba-bc63-41ae-8d24-592afb0e786d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.019e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.03
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: linear
max_grad_norm: 1.0
max_steps: 200
micro_batch_size: 6
mlflow_experiment_name: /tmp/G.O.D/995ce5e788bf78d3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 557ad243-ad4a-4c07-8e2a-35fce45c4439
wandb_project: cold5
wandb_run: your_name
wandb_runid: 557ad243-ad4a-4c07-8e2a-35fce45c4439
warmup_steps: 20
weight_decay: 0.0
xformers_attention: null
feda7fba-bc63-41ae-8d24-592afb0e786d
This model is a fine-tuned version of unsloth/mistral-7b-instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7120
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.019e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 3.8370 |
2.9483 | 0.0071 | 50 | 2.8704 |
2.6365 | 0.0143 | 100 | 2.7535 |
2.535 | 0.0214 | 150 | 2.7217 |
2.4751 | 0.0285 | 200 | 2.7120 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for fedovtt/feda7fba-bc63-41ae-8d24-592afb0e786d
Base model
unsloth/mistral-7b-instruct-v0.3