TGrote11's picture
Update README.md
f43d883 verified
metadata
language:
  - de
library_name: transformers
datasets:
  - fhswf/german_handwriting
license: afl-3.0
pipeline_tag: image-to-text

Model Card for TrOCR_german_handwritten

Model Details

TrOCR model fine-tuned on the german_handwriting. It was introduced in the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Li et al. and first released in this repository.

  • Developed by: [More Information Needed]
  • Model type: Transformer OCR
  • Language(s) (NLP): German
  • License: afl-3.0
  • Finetuned from model [optional]: TrOCR_large_handwritten

Uses

Here is how to use this model in PyTorch:

from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
# load image from the IAM database
url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg'
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = TrOCRProcessor.from_pretrained('fhswf/TrOCR_german_handwritten')
model = VisionEncoderDecoderModel.from_pretrained('fhswf/TrOCR_german_handwritten')
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

Bias, Risks, and Limitations

You can use the raw model for optical character recognition (OCR) on single text-line images of german handwriting.

Training Details

Training Data

This model was finetuned on german_handwriting.

Evaluation

Levenshtein: 1.85
WER (Word Error Rate): 17.5%
CER (Character Error Rate): 4.1%

BibTeX:

@misc{li2021trocr,
      title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, 
      author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
      year={2021},
      eprint={2109.10282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}