|
Original model: https://huggingface.co/brucethemoose/Yi-34B-200K-RPMerge |
|
|
|
Steps: |
|
1. Convert to GGUF using llama.cpp (clone from source, install requirements, then run this) |
|
> `python convert.py /mnt/d/LLM_Models/Yi-34B-200K-RPMerge/ --vocab-type hfft --outtype f32 --outfile Yi-34B-200K-RPMerge.gguf` |
|
2. Create imatrix (offload as much as you can to the GPU) |
|
> `./imatrix -m /mnt/d/LLM_Models/Yi-34B-200K-RPMerge.gguf -f /mnt/d/LLM_Models/8k_random_data.txt -o /mnt/d/LLM_Models/Yi-34B-200K-RPMerge.imatrix.dat -ngl 20` |
|
3. Quantize using imatrix |
|
> `./quantize --imatrix /mnt/d/LLM_Models/Yi-34B-200K-RPMerge.imatrix.dat /mnt/d/LLM_Models/Yi-34B-200K-RPMerge.gguf /mnt/d/LLM_Models/Yi-34B-200K-RPMerge.IQ2_XXS.gguf IQ2_XXS |
|
|
|
I have also uploaded [8k_random_data.txt from this github discussion](https://github.com/ggerganov/llama.cpp/discussions/5006) |
|
And the importance matrix I made (`Yi-34B-200K-RPMerge.imatrix.dat`) |