metadata
library_name: transformers
license: apache-2.0
base_model:
- nbeerbower/flammen15-mistral-7B
datasets:
- jondurbin/gutenberg-dpo-v0.1
flammen15-gutenberg-DPO-v1-7B
A Mistral 7B LLM built from merging pretrained models and finetuning on Jon Durbin's Gutenberg DPO set. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence
Method
Finetuned using an A100 on Google Colab. Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
Configuration
LoRA, model, and training settings:
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
learning_rate=2e-5,
lr_scheduler_type="cosine",
max_steps=200,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()