Text Generation
Transformers
Safetensors
mistral
nsfw
Not-For-All-Audiences
text-generation-inference
Inference Endpoints
nbeerbower's picture
Update README.md
a5bb8eb verified
|
raw
history blame
2.21 kB
metadata
library_name: transformers
license: apache-2.0
base_model:
  - flammenai/flammen18-mistral-7B
datasets:
  - ResplendentAI/NSFW_RP_Format_DPO
tags:
  - nsfw
  - not-for-all-audiences

image/png

flammen18X-mistral-7B

A Mistral 7B LLM built from merging pretrained models and finetuning on ResplendentAI/NSFW_RP_Format_DPO. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False

# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=2,
    gradient_accumulation_steps=8,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=420,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    max_prompt_length=1024,
    max_length=1536,
    force_use_ref_model=True
)

# Fine-tune model with DPO
dpo_trainer.train()