Edit model card

Modelo para Reconhecimento de Entidade Nomeadas em português utilizando o modelo spaCy pt_core_news_sm

Link do trabalho no Kaggle: https://www.kaggle.com/datasets/flaviagg/lenerbr .

Criei um Web App que proporciona a comparação dos modelos sm e lg: https://huggingface.co/spaces/flaviaggp/Streamlit_Lener .

Métricas por entidade

Screenshot

Feature Description
Name pt_pipeline
Version 0.0.0
spaCy >=3.4.4,<3.5.0
Default Pipeline tok2vec, ner
Components tok2vec, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License n/a
Author n/a

Label Scheme

View label scheme (6 labels for 1 components)
Component Labels
ner JURISPRUDENCIA, LEGISLACAO, LOCAL, ORGANIZACAO, PESSOA, TEMPO

Accuracy

Type Score
ENTS_F 82.73
ENTS_P 80.14
ENTS_R 81.42
TOK2VEC_LOSS 66943.07
NER_LOSS 124326.31
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train flaviaggp/pt_pipeline

Space using flaviaggp/pt_pipeline 1

Evaluation results