|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wikipedia_30 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wikipedia_30 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1731 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 30 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100000 |
|
- training_steps: 400000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:-----:|:---------------:| |
|
| No log | 2.3378 | 2000 | 6.9004 | |
|
| 7.3814 | 4.6756 | 4000 | 6.9259 | |
|
| 7.3814 | 7.0134 | 6000 | 6.9098 | |
|
| 6.845 | 9.3513 | 8000 | 6.6689 | |
|
| 6.845 | 11.6891 | 10000 | 5.7875 | |
|
| 5.8652 | 14.0269 | 12000 | 5.1923 | |
|
| 5.8652 | 16.3647 | 14000 | 4.8226 | |
|
| 4.8065 | 18.7025 | 16000 | 4.5346 | |
|
| 4.8065 | 21.0403 | 18000 | 4.3246 | |
|
| 4.2309 | 23.3781 | 20000 | 4.1348 | |
|
| 4.2309 | 25.7160 | 22000 | 3.9652 | |
|
| 3.8185 | 28.0538 | 24000 | 3.8108 | |
|
| 3.8185 | 30.3916 | 26000 | 3.7102 | |
|
| 3.5163 | 32.7294 | 28000 | 3.6271 | |
|
| 3.5163 | 35.0672 | 30000 | 3.5350 | |
|
| 3.2957 | 37.4050 | 32000 | 3.5053 | |
|
| 3.2957 | 39.7428 | 34000 | 3.4144 | |
|
| 3.1388 | 42.0807 | 36000 | 3.3632 | |
|
| 3.1388 | 44.4185 | 38000 | 3.3095 | |
|
| 3.0197 | 46.7563 | 40000 | 3.3381 | |
|
| 3.0197 | 49.0941 | 42000 | 3.3036 | |
|
| 2.9398 | 51.4319 | 44000 | 3.2828 | |
|
| 2.9398 | 53.7697 | 46000 | 3.2407 | |
|
| 2.8775 | 56.1075 | 48000 | 3.2374 | |
|
| 2.8775 | 58.4454 | 50000 | 3.2790 | |
|
| 2.8378 | 60.7832 | 52000 | 3.1918 | |
|
| 2.8378 | 63.1210 | 54000 | 3.1904 | |
|
| 2.8089 | 65.4588 | 56000 | 3.1705 | |
|
| 2.8089 | 67.7966 | 58000 | 3.1829 | |
|
| 2.7826 | 70.1344 | 60000 | 3.2242 | |
|
| 2.7826 | 72.4722 | 62000 | 3.1731 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|