fuzzy-mittenz's picture
Upload README.md with huggingface_hub
c8216aa verified
|
raw
history blame
2.43 kB
---
library_name: transformers
tags:
- generated_from_trainer
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
base_model: EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3
model-index:
- name: EVA-Qwen2.5-1.5B-FFT-v0.0
results: []
---
# fuzzy-mittenz/EVA-Qwen2.5-1.5B-v0.0-Q5_K_S-GGUF
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo fuzzy-mittenz/EVA-Qwen2.5-1.5B-v0.0-Q5_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_s-imat.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo fuzzy-mittenz/EVA-Qwen2.5-1.5B-v0.0-Q5_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_s-imat.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo fuzzy-mittenz/EVA-Qwen2.5-1.5B-v0.0-Q5_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_s-imat.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo fuzzy-mittenz/EVA-Qwen2.5-1.5B-v0.0-Q5_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_s-imat.gguf -c 2048
```