Edit model card

This is the best russian opensource model for detecting all 27 types of emotions:

Model F1 macro F1 macro weighted Precision macro Recall macro
seara/rubert-tiny2-ru-go-emotions 0.33 0.48 0.51 0.29
seara/rubert-base-cased-ru-go-emotions 0.36 0.49 0.52 0.31
fyaronskiy/ruRoberta-large-ru-go-emotions default thresholds = 0.5 0.41 0.52 0.58 0.36
fyaronskiy/ruRoberta-large-ru-go-emotions best thresholds 0.48 0.58 0.46 0.55

Summary

This is ruRoberta-large model finetuned on ru_go_emotions dataset for multilabel classification. Model can be used to extract all emotions from text or detect certain emotions. Thresholds are selected on validation set by maximizing f1 macro over all labels.

The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like amusement, gratitude, where the model shows high recognition quality, and classes that pose difficulties for the model - grief, relief, that do have much fewer examples in the training data.

Usage

Using model with Huggingface Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
model = AutoModelForSequenceClassification.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")

best_thresholds = [0.36734693877551017, 0.2857142857142857, 0.2857142857142857, 0.16326530612244897, 0.14285714285714285, 0.14285714285714285, 0.18367346938775508, 0.3469387755102041, 0.32653061224489793, 0.22448979591836732, 0.2040816326530612, 0.2857142857142857, 0.18367346938775508, 0.2857142857142857, 0.24489795918367346, 0.7142857142857142, 0.02040816326530612, 0.3061224489795918, 0.44897959183673464, 0.061224489795918366, 0.18367346938775508, 0.04081632653061224, 0.08163265306122448, 0.1020408163265306, 0.22448979591836732, 0.3877551020408163, 0.3469387755102041, 0.24489795918367346]
LABELS = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
ID2LABEL = dict(enumerate(LABELS))

Here is how you can extract emotions contained in text:

def predict_emotions(text):
  inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
  with torch.no_grad():
      logits = model(**inputs).logits
  probas = torch.sigmoid(logits).squeeze(dim=0)  
  class_binary_labels = (probas > torch.tensor(best_thresholds)).int()
  return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1]

print(predict_emotions('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))

#['admiration', 'love']

This is the way to get all emotions and their scores:

def predict(text):
    inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
    with torch.no_grad():
        logits = model(**inputs).logits
    probas = torch.sigmoid(logits).squeeze(dim=0).tolist()
    probas = [round(proba, 3) for proba in probas]    
    
    labels2probas = dict(zip(LABELS, probas))
    probas_dict_sorted = dict(sorted(labels2probas.items(), key=lambda x: x[1], reverse=True))
    return probas_dict_sorted

print(predict('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
'''{'admiration': 0.81,
 'love': 0.538,
 'joy': 0.041,
 'gratitude': 0.031,
 'approval': 0.026,
 'excitement': 0.023,
 'neutral': 0.009,
 'curiosity': 0.006,
 'amusement': 0.005,
 'desire': 0.005,
 'realization': 0.005,
 'caring': 0.004,
 'confusion': 0.004,
 'surprise': 0.004,
 'disappointment': 0.003,
 'disapproval': 0.003,
 'anger': 0.002,
 'annoyance': 0.002,
 'disgust': 0.002,
 'fear': 0.002,
 'grief': 0.002,
 'optimism': 0.002,
 'pride': 0.002,
 'relief': 0.002,
 'sadness': 0.002,
 'embarrassment': 0.001,
 'nervousness': 0.001,
 'remorse': 0.001}
'''

Eval results on test split of ru-go-emotions

precision recall f1-score support threshold
admiration 0.63 0.75 0.69 504 0.37
amusement 0.76 0.91 0.83 264 0.29
anger 0.47 0.32 0.38 198 0.29
annoyance 0.33 0.39 0.36 320 0.16
approval 0.27 0.58 0.37 351 0.14
caring 0.32 0.59 0.41 135 0.14
confusion 0.41 0.52 0.46 153 0.18
curiosity 0.45 0.73 0.55 284 0.35
desire 0.54 0.31 0.40 83 0.33
disappointment 0.31 0.34 0.33 151 0.22
disapproval 0.31 0.57 0.40 267 0.20
disgust 0.44 0.40 0.42 123 0.29
embarrassment 0.48 0.38 0.42 37 0.18
excitement 0.29 0.43 0.34 103 0.29
fear 0.56 0.78 0.65 78 0.24
gratitude 0.95 0.85 0.89 352 0.71
grief 0.03 0.33 0.05 6 0.02
joy 0.48 0.58 0.53 161 0.31
love 0.73 0.84 0.78 238 0.45
nervousness 0.24 0.48 0.32 23 0.06
optimism 0.57 0.54 0.56 186 0.18
pride 0.67 0.38 0.48 16 0.04
realization 0.18 0.31 0.23 145 0.08
relief 0.30 0.27 0.29 11 0.10
remorse 0.53 0.84 0.65 56 0.22
sadness 0.56 0.53 0.55 156 0.39
surprise 0.55 0.57 0.56 141 0.35
neutral 0.59 0.79 0.68 1787 0.24
micro avg 0.50 0.66 0.57 6329
macro avg 0.46 0.55 0.48 6329
weighted avg 0.53 0.66 0.58 6329
Downloads last month
75
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fyaronskiy/ruRoberta-large-ru-go-emotions

Finetuned
(12)
this model

Dataset used to train fyaronskiy/ruRoberta-large-ru-go-emotions