This is the best russian opensource model for detecting all 27 types of emotions:
Model | F1 macro | F1 macro weighted | Precision macro | Recall macro |
---|---|---|---|---|
seara/rubert-tiny2-ru-go-emotions | 0.33 | 0.48 | 0.51 | 0.29 |
seara/rubert-base-cased-ru-go-emotions | 0.36 | 0.49 | 0.52 | 0.31 |
fyaronskiy/ruRoberta-large-ru-go-emotions default thresholds = 0.5 | 0.41 | 0.52 | 0.58 | 0.36 |
fyaronskiy/ruRoberta-large-ru-go-emotions best thresholds | 0.48 | 0.58 | 0.46 | 0.55 |
Summary
This is ruRoberta-large model finetuned on ru_go_emotions dataset for multilabel classification. Model can be used to extract all emotions from text or detect certain emotions. Thresholds are selected on validation set by maximizing f1 macro over all labels.
The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like amusement, gratitude, where the model shows high recognition quality, and classes that pose difficulties for the model - grief, relief, that do have much fewer examples in the training data.
Usage
Using model with Huggingface Transformers:
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
model = AutoModelForSequenceClassification.from_pretrained("fyaronskiy/ruRoberta-large-ru-go-emotions")
best_thresholds = [0.36734693877551017, 0.2857142857142857, 0.2857142857142857, 0.16326530612244897, 0.14285714285714285, 0.14285714285714285, 0.18367346938775508, 0.3469387755102041, 0.32653061224489793, 0.22448979591836732, 0.2040816326530612, 0.2857142857142857, 0.18367346938775508, 0.2857142857142857, 0.24489795918367346, 0.7142857142857142, 0.02040816326530612, 0.3061224489795918, 0.44897959183673464, 0.061224489795918366, 0.18367346938775508, 0.04081632653061224, 0.08163265306122448, 0.1020408163265306, 0.22448979591836732, 0.3877551020408163, 0.3469387755102041, 0.24489795918367346]
LABELS = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
ID2LABEL = dict(enumerate(LABELS))
Here is how you can extract emotions contained in text:
def predict_emotions(text):
inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
with torch.no_grad():
logits = model(**inputs).logits
probas = torch.sigmoid(logits).squeeze(dim=0)
class_binary_labels = (probas > torch.tensor(best_thresholds)).int()
return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1]
print(predict_emotions('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
#['admiration', 'love']
This is the way to get all emotions and their scores:
def predict(text):
inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
with torch.no_grad():
logits = model(**inputs).logits
probas = torch.sigmoid(logits).squeeze(dim=0).tolist()
probas = [round(proba, 3) for proba in probas]
labels2probas = dict(zip(LABELS, probas))
probas_dict_sorted = dict(sorted(labels2probas.items(), key=lambda x: x[1], reverse=True))
return probas_dict_sorted
print(predict('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
'''{'admiration': 0.81,
'love': 0.538,
'joy': 0.041,
'gratitude': 0.031,
'approval': 0.026,
'excitement': 0.023,
'neutral': 0.009,
'curiosity': 0.006,
'amusement': 0.005,
'desire': 0.005,
'realization': 0.005,
'caring': 0.004,
'confusion': 0.004,
'surprise': 0.004,
'disappointment': 0.003,
'disapproval': 0.003,
'anger': 0.002,
'annoyance': 0.002,
'disgust': 0.002,
'fear': 0.002,
'grief': 0.002,
'optimism': 0.002,
'pride': 0.002,
'relief': 0.002,
'sadness': 0.002,
'embarrassment': 0.001,
'nervousness': 0.001,
'remorse': 0.001}
'''
Eval results on test split of ru-go-emotions
precision | recall | f1-score | support | threshold | |
---|---|---|---|---|---|
admiration | 0.63 | 0.75 | 0.69 | 504 | 0.37 |
amusement | 0.76 | 0.91 | 0.83 | 264 | 0.29 |
anger | 0.47 | 0.32 | 0.38 | 198 | 0.29 |
annoyance | 0.33 | 0.39 | 0.36 | 320 | 0.16 |
approval | 0.27 | 0.58 | 0.37 | 351 | 0.14 |
caring | 0.32 | 0.59 | 0.41 | 135 | 0.14 |
confusion | 0.41 | 0.52 | 0.46 | 153 | 0.18 |
curiosity | 0.45 | 0.73 | 0.55 | 284 | 0.35 |
desire | 0.54 | 0.31 | 0.40 | 83 | 0.33 |
disappointment | 0.31 | 0.34 | 0.33 | 151 | 0.22 |
disapproval | 0.31 | 0.57 | 0.40 | 267 | 0.20 |
disgust | 0.44 | 0.40 | 0.42 | 123 | 0.29 |
embarrassment | 0.48 | 0.38 | 0.42 | 37 | 0.18 |
excitement | 0.29 | 0.43 | 0.34 | 103 | 0.29 |
fear | 0.56 | 0.78 | 0.65 | 78 | 0.24 |
gratitude | 0.95 | 0.85 | 0.89 | 352 | 0.71 |
grief | 0.03 | 0.33 | 0.05 | 6 | 0.02 |
joy | 0.48 | 0.58 | 0.53 | 161 | 0.31 |
love | 0.73 | 0.84 | 0.78 | 238 | 0.45 |
nervousness | 0.24 | 0.48 | 0.32 | 23 | 0.06 |
optimism | 0.57 | 0.54 | 0.56 | 186 | 0.18 |
pride | 0.67 | 0.38 | 0.48 | 16 | 0.04 |
realization | 0.18 | 0.31 | 0.23 | 145 | 0.08 |
relief | 0.30 | 0.27 | 0.29 | 11 | 0.10 |
remorse | 0.53 | 0.84 | 0.65 | 56 | 0.22 |
sadness | 0.56 | 0.53 | 0.55 | 156 | 0.39 |
surprise | 0.55 | 0.57 | 0.56 | 141 | 0.35 |
neutral | 0.59 | 0.79 | 0.68 | 1787 | 0.24 |
micro avg | 0.50 | 0.66 | 0.57 | 6329 | |
macro avg | 0.46 | 0.55 | 0.48 | 6329 | |
weighted avg | 0.53 | 0.66 | 0.58 | 6329 |
- Downloads last month
- 75
Model tree for fyaronskiy/ruRoberta-large-ru-go-emotions
Base model
ai-forever/ruRoberta-large