gabrielblins's picture
emotion_classifier_bert_mini
b61c930
metadata
license: mit
base_model: prajjwal1/bert-mini
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: bert-mini-emotion_classifier
    results: []

bert-mini-emotion_classifier

This model is a fine-tuned version of prajjwal1/bert-mini on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0648
  • F1: 0.9315
  • Roc Auc: 0.9589
  • Accuracy: 0.9224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.4176 0.1 500 0.2929 0.6755 0.7687 0.5550
0.2278 0.19 1000 0.1623 0.8931 0.9246 0.8630
0.1513 0.29 1500 0.1184 0.9185 0.9450 0.9022
0.1198 0.38 2000 0.0957 0.9274 0.9536 0.9197
0.1011 0.48 2500 0.0815 0.9306 0.9568 0.9230
0.0881 0.58 3000 0.0729 0.9320 0.9575 0.9237
0.0815 0.67 3500 0.0669 0.9337 0.9596 0.9256
0.0767 0.77 4000 0.0633 0.9346 0.9609 0.9260
0.0721 0.86 4500 0.0612 0.9333 0.9602 0.9233
0.071 0.96 5000 0.0601 0.9339 0.9607 0.9251

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0