ViTGPT2_VW
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1256 | 0.03 | 1000 | 0.0928 |
0.0947 | 0.07 | 2000 | 0.0897 |
0.0889 | 0.1 | 3000 | 0.0859 |
0.0888 | 0.14 | 4000 | 0.0842 |
0.0866 | 0.17 | 5000 | 0.0831 |
0.0852 | 0.2 | 6000 | 0.0819 |
0.0833 | 0.24 | 7000 | 0.0810 |
0.0835 | 0.27 | 8000 | 0.0802 |
0.081 | 0.31 | 9000 | 0.0796 |
0.0803 | 0.34 | 10000 | 0.0789 |
0.0814 | 0.38 | 11000 | 0.0785 |
0.0799 | 0.41 | 12000 | 0.0780 |
0.0786 | 0.44 | 13000 | 0.0776 |
0.0796 | 0.48 | 14000 | 0.0771 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
- Downloads last month
- 2
Inference API (serverless) does not yet support transformers models for this pipeline type.