ViTGPT2_vizwiz / README.md
gagan3012's picture
Update README.md
4a1d430
metadata
tags:
  - generated_from_trainer
  - image-to-text
model-index:
  - name: ViTGPT2_vizwiz
    results: []

ViTGPT2_vizwiz

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.1207 0.07 1000 0.0906
0.0916 0.14 2000 0.0861
0.0879 0.2 3000 0.0840
0.0856 0.27 4000 0.0822
0.0834 0.34 5000 0.0806
0.0817 0.41 6000 0.0795
0.0812 0.48 7000 0.0785
0.0808 0.55 8000 0.0779
0.0796 0.61 9000 0.0771
0.0786 0.68 10000 0.0767
0.0774 0.75 11000 0.0762
0.0772 0.82 12000 0.0758
0.0756 0.89 13000 0.0754
0.0759 0.96 14000 0.0750
0.0756 1.02 15000 0.0748
0.0726 1.09 16000 0.0745
0.0727 1.16 17000 0.0745
0.0715 1.23 18000 0.0742
0.0726 1.3 19000 0.0741
0.072 1.37 20000 0.0738
0.0723 1.43 21000 0.0735
0.0715 1.5 22000 0.0734
0.0724 1.57 23000 0.0732
0.0723 1.64 24000 0.0730
0.0718 1.71 25000 0.0729
0.07 1.78 26000 0.0728
0.0702 1.84 27000 0.0726
0.0704 1.91 28000 0.0725
0.0703 1.98 29000 0.0725
0.0686 2.05 30000 0.0726
0.0687 2.12 31000 0.0726
0.0688 2.19 32000 0.0724
0.0677 2.25 33000 0.0724
0.0665 2.32 34000 0.0725
0.0684 2.39 35000 0.0723
0.0678 2.46 36000 0.0722
0.0686 2.53 37000 0.0722
0.067 2.59 38000 0.0721
0.0669 2.66 39000 0.0721
0.0673 2.73 40000 0.0721
0.0673 2.8 41000 0.0720
0.0662 2.87 42000 0.0720
0.0681 2.94 43000 0.0719

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0