File size: 5,863 Bytes
ff20213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b10f7
ff20213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0c538
ff20213
 
 
 
 
 
 
 
 
 
 
 
 
9b0c538
4341bdc
 
ff20213
 
9b0c538
4341bdc
ff20213
 
 
4341bdc
ff20213
4341bdc
ff20213
 
 
 
 
 
 
 
 
9b0c538
 
 
ff20213
 
 
 
 
9b0c538
ff20213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b10f7
 
 
ff20213
9b0c538
 
 
ff20213
9b0c538
 
 
ff20213
9b0c538
 
 
ff20213
95b10f7
ff20213
95b10f7
ff20213
95b10f7
 
 
ff20213
 
9b0c538
ff20213
 
 
 
 
9b0c538
 
 
 
ff20213
 
 
 
 
 
9b0c538
ff20213
9b0c538
 
ff20213
9b0c538
 
 
ff20213
95b10f7
ff20213
95b10f7
ff20213
95b10f7
4341bdc
 
ff20213
 
 
95b10f7
 
 
ff20213
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---

language: km
datasets:
- OpenSLR
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: wav2vec2-xlsr-Khmer by Gagan Bhatia 
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR km 
      type: OpenSLR
      args: km
    metrics:
       - name: Test WER
         type: wer
         value: 24.96
---

# Wav2Vec2-Large-XLSR-53-khmer 

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Khmer using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR Kh](http://www.openslr.org/42/). 

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

!wget https://www.openslr.org/resources/42/km_kh_male.zip
!unzip km_kh_male.zip
!ls km_kh_male

colnames=['path','sentence'] 
df  = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames)
df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/km_kh_male/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train')

processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\\\\\\\\\\\\\\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

```
#### Result 

Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']

## Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.  # TODO: replace #TODO: replace language with your {language}, *e.g.* French


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from sklearn.model_selection import train_test_split
import pandas as pd
from datasets import load_dataset

!wget https://www.openslr.org/resources/42/km_kh_male.zip
!unzip km_kh_male.zip
!ls km_kh_male

colnames=['path','sentence'] 
df  = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames)
df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav'

train, test = train_test_split(df, test_size=0.1)

test.to_csv('/content/km_kh_male/line_index_test.csv')

test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train')
wer = load_metric("wer")
cer = load_metric("cer")


processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") 
model.to("cuda")

chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'  
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower()
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\treturn batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

\\twith torch.no_grad():
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

\\tpred_ids = torch.argmax(logits, dim=-1)
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\\treturn batch

cer = load_metric("cer")

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"])))
```

**Test Result**: 24.96 %  

WER: 24.962519
CER: 6.950925

## Training

The script used for training can be found [here](https://colab.research.google.com/drive/1yo_OTMH8FHQrAKCkKdQGMqpkj-kFhS_2?usp=sharing)