garrettbaber's picture
Update README.md
a3a66e7
|
raw
history blame
1.6 kB
metadata
tags:
  - text-regression
  - emotion
  - sentiment
  - emotion intensity
language:
  - unk
widget:
  - text: I'm scared
datasets:
  - SemEval-2018-Task-1-Text-Regression-Task
co2_eq_emissions:
  emissions: 0.17201402406362057
pipeline_tag: text-classification

twitter-roberta-base-fear-intensity

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression).

  • Warning: Hosted inference API produces inaccurate values

Model Trained Using AutoTrain

  • Problem type: Single Column Regression
  • Model ID: 68748137460
  • CO2 Emissions (in grams): 0.1720

Validation Metrics

  • Loss: 0.011
  • MSE: 0.011
  • MAE: 0.083
  • R2: 0.712
  • RMSE: 0.107
  • Explained Variance: 0.743

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I'm scared"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-fear-intensity

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-fear-intensity")

tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-fear-intensity")

inputs = tokenizer("I'm scared", return_tensors="pt")

outputs = model(**inputs)

citation: | @misc{garrettbaber/twitter-roberta-base-fear-intensity, title={Twitter RoBERTa Base Fear Intensity}, author={Garrett Baber}, year={2023} }