File size: 4,086 Bytes
9407f87 9c797a7 5a286a4 9c797a7 9407f87 9c797a7 f9c6bc7 b02f45e 0c6100a b02f45e 9c797a7 b02f45e 9c797a7 b02f45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
base_model:
- unsloth/Llama-3.2-1B-Instruct
library_name: peft
language:
- en
license: cc0-1.0
---
# A !!!!!disclaimer uh. for now, the experimentation does not lead me anywhere due to limit resources that I have and do not recommend to download this model. Working on working on it.
PEFT Finnegan-tuned LLaMA 3.2-1B-instruct on part of Finnegans Wake dataset for text generation in the style of James Joyce.
Space: https://huggingface.co/spaces/genaforvena/huivam_finnegans_spaceship
## Iteration 2:
Dataset: same (forgot to save config with new dataset).
finnetune.yaml:
```
# The ID of the dataset you created
dataset: huivam-finnegans-2
# Configuration for text completion fine-tuning
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b-instruct
```
Finne-tuning commands used:
```
./firectl create dataset huivam-finnegans-2 .\finnegans_wake_dataset_2.jsonl
./firectl create fine-tuning-job --settings-file finnetune.yaml --epochs=3 --learning-rate=2e-5 --batch-size=8
```
New params used to finne-tune:
```
Text Completion:
Input Template: ### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS:
Output Template: ANSWER: {response}
Base Model: accounts/fireworks/models/llama-v3p2-1b-instruct
Epochs: 3
Learning Rate: 2e-05
Lora Rank: 8
Batch Size: 8
Evaluation Split: 0
```
Spent: $0.08
Time: 5 mins
## Iteration 1:
Dataset I prepared like that:
```
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Load the text
with open(INPUT_FILE, "r", encoding="utf-8") as file:
text = file.read()
# Tokenize the text
tokens = tokenizer.encode(text, truncation=False, add_special_tokens=False)
# Split tokens into chunks
chunks = [tokens[i:i + CHUNK_SIZE] for i in range(0, len(tokens), CHUNK_SIZE)]
# Prepare dataset
dataset = []
for chunk in chunks:
chunk_text = tokenizer.decode(chunk, skip_special_tokens=True)
# Split the chunk into three parts randomly
split_points = sorted(random.sample(range(len(chunk_text)), 2)) # Two random split points
context = chunk_text[:split_points[0]]
instruction = chunk_text[split_points[0]:split_points[1]]
response = chunk_text[split_points[1]:]
# Add to dataset
dataset.append({
"context": context,
"instruction": instruction,
"response": response,
})
# Save dataset locally as a .jsonl file
with open(OUTPUT_FILE, "w", encoding="utf-8") as file:
for item in dataset:
json.dump(item, file)
file.write("\n")
print(f"Dataset saved locally to {OUTPUT_FILE}")
```
Example of dataset entry:
```
{"context": "riverrun, past Eve and Adam's, from swerve of shore to bend of bay...", "instruction": "Sir Tristram, violer d'amores, fr'over the short sea...", "response": "O here here how hoth sprowled met the duskt the father of fornicationists..."}
```
fine-tuned on 1/10th of text on fireworks.ai with params:
```
dataset: finnegans_wake_dataset
text_completion:
# How the fields of the JSON dataset should be formatted into the input text
input_template: "### GIVEN THE CONTEXT: {context} ### INSTRUCTION: {instruction} ### RESPONSE IS: "
# How the fields of the JSON dataset should be formatted into the output text
output_template: "ANSWER: {response}"
# The Fireworks model name of the base model
base_model: accounts/fireworks/models/llama-v3p2-1b
# Hyperparameters for fine-tuning (should be passed as args and removed from here)
hyperparameters:
learning_rate: 1e-5 # Learning rate for the optimizer
epochs: 1 # Number of epochs to train
batch_size: 4 # Batch size for training
```
Spent: $0.01
Time: 2 mins
Result: Seemingly not enough data to affect model output. |