File size: 1,919 Bytes
403475c 55e7080 96bce5f 176e474 55e7080 96bce5f 55e7080 96bce5f 176e474 55e7080 96bce5f 55e7080 96bce5f 176e474 55e7080 96bce5f 55e7080 96bce5f 176e474 55e7080 96bce5f 55e7080 96bce5f 176e474 96bce5f 55e7080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
## AIDO.DNA
For a more detailed description, refer to the SOTA model in this collection https://huggingface.co/genbio-ai/dnafm-7b
## How to Use
### Build any downstream models from this backbone
#### Embedding
```python
from genbio_finetune.tasks import Embed
model = Embed.from_config({"model.backbone": "dna300m"}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
embedding = model(collated_batch)
print(embedding.shape)
print(embedding)
```
#### Sequence Level Classification
```python
import torch
from genbio_finetune.tasks import SequenceClassification
model = SequenceClassification.from_config({"model.backbone": "dna300m", "model.n_classes": 2}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Token Level Classification
```python
import torch
from genbio_finetune.tasks import TokenClassification
model = TokenClassification.from_config({"model.backbone": "dna300m", "model.n_classes": 3}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)
print(torch.argmax(logits, dim=-1))
```
#### Regression
```python
from genbio_finetune.tasks import SequenceRegression
model = SequenceRegression.from_config({"model.backbone": "dna300m"}).eval()
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]})
logits = model(collated_batch)
print(logits)
```
#### Or use our one-liner CLI to finetune or evaluate any of the above!
```
gbft fit --model SequenceClassification --model.backbone dna300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
gbft test --model SequenceClassification --model.backbone dna300m --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset>
```
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator)
|