Safetensors
llama
GPM-Llama-3.1-8B / README.md
kirigayahitsugi's picture
Update README.md
d6dd232 verified
|
raw
history blame
14.1 kB
---
license: apache-2.0
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# General Preference Representation Model (GPM)
+ **Authors** (* indicates equal contribution)
Yifan Zhang*, Ge Zhang*, Yue Wu*, Kangping Xu, Quanquan Gu
+ **Paper**: [General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)](https://arxiv.org/abs/2410.02197)
+ **As Huggingface Daily Papers**: [https://huggingface.co/papers/2410.02197](https://huggingface.co/papers/2410.02197)
+ **Code Repository**: [General-Preference-Model (https://github.com/general-preference/general-preference-model)](https://github.com/general-preference/general-preference-model)
+ **Dataset**: [Skywork/Skywork-Reward-Preference-80K-v0.1](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1)
+ **Base Model**: [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
## Overview
The General Preference Representation Model (GPM) improves preference-based reward modeling by embedding responses into a latent space to efficiently capture complex, intransitive human preferences. GPM achieves linear query complexity, allowing for expressive preference representation, and outperforms traditional Bradley-Terry (BT) reward models, particularly in handling cyclic preferences.
## Key Features
- **Preference Representation Learning**: Embeds responses in a multi-dimensional latent space to model intricate human preferences, including cyclic and intransitive structures.
- **Efficient Querying**: Reduces computational complexity to O(K), compared to O(K²) for traditional methods, making GPM scalable for large response sets.
- **General Preference Optimization (GPO)**: Introduces a preference score that integrates with reinforcement learning methods to optimize policy alignment with human preferences.
## Evaluation
The GPM is evaluated using the [RewardBench](https://github.com/allenai/reward-bench) leaderboard, showing significant improvements over the BT model, with a performance margin of up to 5.6%. GPM also excels in modeling cyclic preferences, achieving 100% accuracy on cyclic datasets.
## Citation
If you find this work useful for your research, please consider citing:
```
@article{zhang2024general,
title={General Preference Modeling with Preference Representations for Aligning Language Models},
author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan},
journal={arXiv preprint arXiv:2410.02197},
year={2024}
}
```
## Usage
To use this model, please refer to the [General Preference Model Code Repository](https://github.com/general-preference/general-preference-model). The repository includes detailed instructions for finetuning, evaluation, and integration of the GPM with downstream tasks. Below is an example code snippet:
```python
from typing import Optional, List, Dict
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
import torch.nn.functional as F
from transformers import AutoTokenizer
def get_tokenizer(pretrain, model, padding_side="left", use_fast=True):
tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast)
tokenizer.padding_side = padding_side
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
return tokenizer
def get_reward_model(base_causal_model, base_llm_model, is_general_preference: bool=False, add_prompt_head: bool=False, value_head_dim: int=2):
class CustomRewardModel(base_causal_model):
def __init__(self, config: AutoConfig):
super().__init__(config)
setattr(self, self.base_model_prefix, base_llm_model(config))
if not is_general_preference:
self.value_head = nn.Linear(config.hidden_size, 1, bias=False)
else:
self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False)
if add_prompt_head:
self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False)
self.is_general_preference = is_general_preference
self.post_init()
def custom_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
return_output=False,
) -> torch.Tensor:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
outputs = getattr(self, self.base_model_prefix)(
input_ids, attention_mask=attention_mask, position_ids=position_ids
)
last_hidden_states = outputs["last_hidden_state"]
if not self.is_general_preference:
values = self.value_head(last_hidden_states).squeeze(-1)
# left padding in training mode
if self.training:
reward = values[:, -1]
else:
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1, keepdim=True)
reward = values.gather(dim=1, index=eos_indices).squeeze(1)
if return_output:
return reward, outputs
else:
return reward, None
else:
values = self.value_head(last_hidden_states)
# left padding in training mode
if self.training:
reward = values[:, -1, :]
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
else:
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1)
eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1]
reward_list = []
for dim in range(value_head_dim):
reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices))
reward = torch.cat(reward_list, dim=1)
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
if return_output:
return reward, outputs
else:
return reward, None
def create_skew_symmetric_block_matrix(self, dim, device, dtype, prompt_hidden_states):
"""
Create a batch of skew-symmetric block matrices where each matrix is data-dependent on
the corresponding prompt_hidden_states. Only the relevant block diagonal parts are generated.
Args:
- dim: Dimension of the square matrix (must be even).
- prompt_hidden_states: Tensor of shape [batch_size, hidden_dim].
Returns:
- batch_R_matrices: Tensor of shape [batch_size, dim, dim], with skew-symmetric block entries.
"""
if hasattr(self, 'prompt_head'):
batch_size = prompt_hidden_states.shape[0]
# Ensure that dim is even, as we're creating blocks of size 2x2
assert dim % 2 == 0, "dim must be even for skew-symmetric block generation"
# Pass through the linear layer to get the block diagonal entries (half of the matrix's off-diagonal blocks)
block_values = self.prompt_head(prompt_hidden_states).view(batch_size, dim // 2)
block_values = torch.softmax(block_values, dim=-1)
# Create a batch of zero matrices [batch_size, dim, dim]
batch_R_matrices = torch.zeros((batch_size, dim, dim), device=device, dtype=dtype)
# Fill only the block diagonal entries with the learned values
for i in range(0, dim, 2):
batch_R_matrices[:, i, i + 1] = -block_values[:, i // 2]
batch_R_matrices[:, i + 1, i] = block_values[:, i // 2] # Skew-symmetric condition
else:
raise AttributeError("prompt_head is not defined. Ensure 'add_prompt_head' is set to True during initialization.")
return batch_R_matrices
return CustomRewardModel
def generate_high_dim_result_with_prompt(model, value_head_dim, chosen_reward, rejected_reward, prompt_hidden_states):
R_matrix = model.create_skew_symmetric_block_matrix(value_head_dim, chosen_reward.device, chosen_reward.dtype, prompt_hidden_states)
if chosen_reward.device == rejected_reward.device == R_matrix.device:
transformed_chosen = torch.bmm(chosen_reward.view(chosen_reward.shape[0], 1, value_head_dim), R_matrix.transpose(1, 2))
result = torch.bmm(transformed_chosen, rejected_reward.view(rejected_reward.shape[0], value_head_dim, 1))
result = result.view(chosen_reward.shape[0])
return result
class GPMPipeline:
def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True, add_prompt_head: bool=True, value_head_dim: int=2, bf16: bool=True, truncation: bool=True, max_length: int=4096, padding: bool=True, tau: float=0.1):
self.device = device
self.is_general_preference = is_general_preference
self.add_prompt_head = add_prompt_head
self.value_head_dim = value_head_dim
self.truncation = truncation
self.max_length = max_length
self.padding = padding
self.tau = tau
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
config._attn_implementation = "flash_attention_2"
base_class = AutoModel._model_mapping[type(config)]
base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None)
cls_class = get_reward_model(base_causal_class, base_class, is_general_preference, add_prompt_head, value_head_dim)
# configure model
self.model = cls_class.from_pretrained(
model_name_or_path,
config=config,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if bf16 else "auto",
)
# configure tokenizer
self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True)
self.tokenizer.truncation_side = "right"
# prepare model
self.model.to(device)
self.model.eval()
def __call__(self, samples: List[List[Dict[str, str]]], return_prompt=False):
input_texts = [self.tokenizer.apply_chat_template(sample, tokenize=False) for sample in samples]
inputs = self.tokenizer(
input_texts,
truncation=True,
max_length=self.max_length,
padding=True,
return_tensors="pt",
).to(self.device)
inputs["input_ids"][:, -1] = self.tokenizer.eos_token_id
inputs["attention_mask"][:, -1] = 1
with torch.no_grad():
rewards, outputs = self.model.custom_forward(**inputs, return_output=return_prompt)
chosen_response_len_list = []
if return_prompt:
prompt_texts = [self.tokenizer.apply_chat_template([sample[0]], tokenize=False) for sample in samples]
for i in range(len(input_texts)):
prompt_token = self.tokenizer(
prompt_texts[i],
max_length=self.max_length,
padding=False,
truncation=True,
return_tensors="pt",
)
chosen_token = self.tokenizer(
input_texts[i],
max_length=self.max_length,
padding=False,
truncation=True,
return_tensors="pt",
)
chosen_response_len = chosen_token["attention_mask"].sum() - prompt_token["attention_mask"].sum()
chosen_response_len_list.append(chosen_response_len)
chosen_response_len = torch.tensor(chosen_response_len_list).view(-1, 1).to(self.device)
if return_prompt:
chosen_last_hidden_states = outputs["last_hidden_state"]
prompt_end_index = chosen_last_hidden_states.size(1) - chosen_response_len - 1
prompt_end_index_expanded = prompt_end_index.unsqueeze(-1).expand(-1, -1, chosen_last_hidden_states.size(-1))
prompt_hidden_state = torch.gather(chosen_last_hidden_states, dim=1, index=prompt_end_index_expanded).squeeze(1)
return rewards, prompt_hidden_state
else:
return rewards
prompt_text = "Describe the importance of reading books in today's digital age."
response1 = "Books remain crucial in the digital era, offering in-depth knowledge and fostering critical thinking. They provide a unique, immersive experience that digital media can't replicate, contributing significantly to personal and intellectual growth."
response2 = "Books are still useful for learning new things. They help you relax and can be a good break from screens."
context1 = [
{"role": "user", "content": prompt_text},
{"role": "assistant", "content": response1}
]
context2 = [
{"role": "user", "content": prompt_text},
{"role": "assistant", "content": response2}
]
rm = GPMPipeline("general-preference/GPM-Llama-3.1-8B", value_head_dim=6)
reward1, prompt_hidden_state = rm([context1], return_prompt=True)
reward2 = rm([context2])
result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state)
result_batch = result.float().cpu().detach().numpy().tolist()
results = []
[
results.append(1) if result > 0 else results.append(0)
for result in result_batch
]
print(result_batch)
```