Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

XLNet Fine-tuned on SQuAD 2.0 Dataset

XLNet jointly developed by Google and CMU and fine-tuned on SQuAD 2.0 for question answering down-stream task.

Training Results (Metrics)

{
    "HasAns_exact": 74.7132253711201
    "HasAns_f1": 82.11971607032643
    "HasAns_total": 5928
    "NoAns_exact": 73.38940285954584
    "NoAns_f1": 73.38940285954584
    "NoAns_total": 5945
    "best_exact": 75.67590331003116
    "best_exact_thresh": -19.554906845092773
    "best_f1": 79.16215426779269
    "best_f1_thresh": -19.554906845092773
    "epoch": 4.0
    "exact": 74.05036637749515
    "f1": 77.74830934598614
    "total": 11873
}

Results Comparison

Metric Paper Model
EM 78.46 75.68 (-2.78)
F1 81.33 79.16 (-2.17)

Better fine-tuned models coming soon.

How to Use

from transformers import XLNetForQuestionAnswering, XLNetTokenizerFast

model = XLNetForQuestionAnswering.from_pretrained('jkgrad/xlnet-base-squadv2)
tokenizer = XLNetTokenizerFast.from_pretrained('jkgrad/xlnet-base-squadv2')
Downloads last month
46
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.