gmonsoon's picture
Update README.md
3b2ade7 verified
|
raw
history blame
1.99 kB
---
base_model:
- GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
- aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
tags:
- merge
- mergekit
license: gemma
language:
- en
- id
- jv
- su
---
# SahabatAI-Lion-9B-TIES-v1
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/rJ0ogty-DbLUEH48Ms5lE.png)
Based on some research, when a finetuned model is merged with its base model with TIES method, there is possibility the merged model will achieve better output.
gmonsoon/SahabatAI-Lion-9B-TIES-v1 is a merge of the following models:
* [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)
* [aisingapore/gemma2-9b-cpt-sea-lionv3-instruct](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct)
DEMO Spaces: [HERE](https://huggingface.co/spaces/gmonsoon/SahabatAI-Lion-9B-TIES-v1)
## 🧩 Configuration
```yaml
models:
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
merge_method: ties
base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
parameters:
density: 1
normalize: true
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/SahabatAI-Lion-9B-TIES-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```