gmunkhtur commited on
Commit
d942f56
·
verified ·
1 Parent(s): a23cbb3

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:77201
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: '"17 тэрбумын хэрэгт холбогдсон хүмүүсийг шалгаж байна."'
12
+ sentences:
13
+ - Шинэ сайд томилогдлоо."
14
+ - '"Авлига авсан хүмүүсийг шалгаж байна."'
15
+ - Шүүхийг засварлах мөнгө байхгүй байна."
16
+ - source_sentence: '"Гэмт хэрэг үйлдсэн. "'
17
+ sentences:
18
+ - LIKE дар.
19
+ - Саусгоби сэндс компанийн хэргээр мөрдөн байцаалт явагдаж байна."
20
+ - '"Гэмтэл учруулсан."'
21
+ - source_sentence: '"Иргэдийн хүсэлтийг шинэчлэлийн Засгийн газар хэрэгжүүлнэ."'
22
+ sentences:
23
+ - '"Засгийн газар иргэдийн хүсэлтийг хэрэгжүүлэх бодолтой байна."'
24
+ - '"Ц.Болд албан тушаалаа ашиглан төсвөөс мөнгө завшсан байна."'
25
+ - Шүүх хараат бус байх ёстой."
26
+ - source_sentence: '"Ам.долларын ханш суларснаас бэрхшээл үүсэж байна."'
27
+ sentences:
28
+ - '"тушаал"'
29
+ - Шүүхийн шийдвэрийн талаарх судалгаа хийнэ."
30
+ - '"Валютын ханшийн өөрчлөлтөөс болж бэрхшээл гарч байна."'
31
+ - source_sentence: '"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"'
32
+ sentences:
33
+ - БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.
34
+ - Жастин Бибер, Кэти Перри нарын элэглэл хамгийн түрүүнд дүрслэгдэх аж.
35
+ - '"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."'
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: dev t
49
+ type: dev-t
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.9547459589724314
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.9538075641510714
56
+ name: Spearman Cosine
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: test t
62
+ type: test-t
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.956384303059334
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.9566981709702497
69
+ name: Spearman Cosine
70
+ ---
71
+
72
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
81
+ - **Maximum Sequence Length:** 128 tokens
82
+ - **Output Dimensionality:** 384 dimensions
83
+ - **Similarity Function:** Cosine Similarity
84
+ - **Training Dataset:**
85
+ - csv
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
100
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mn_v2")
120
+ # Run inference
121
+ sentences = [
122
+ '"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"',
123
+ '"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."',
124
+ 'БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 384]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Semantic Similarity
165
+
166
+ * Datasets: `dev-t` and `test-t`
167
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
168
+
169
+ | Metric | dev-t | test-t |
170
+ |:--------------------|:-----------|:-----------|
171
+ | pearson_cosine | 0.9547 | 0.9564 |
172
+ | **spearman_cosine** | **0.9538** | **0.9567** |
173
+
174
+ <!--
175
+ ## Bias, Risks and Limitations
176
+
177
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
178
+ -->
179
+
180
+ <!--
181
+ ### Recommendations
182
+
183
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
184
+ -->
185
+
186
+ ## Training Details
187
+
188
+ ### Training Dataset
189
+
190
+ #### csv
191
+
192
+ * Dataset: csv
193
+ * Size: 77,201 training samples
194
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
195
+ * Approximate statistics based on the first 1000 samples:
196
+ | | sentence1 | sentence2 | score |
197
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
198
+ | type | string | string | float |
199
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.02 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.66 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: -0.14</li><li>mean: 0.63</li><li>max: 1.0</li></ul> |
200
+ * Samples:
201
+ | sentence1 | sentence2 | score |
202
+ |:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
203
+ | <code>Маргааш мэдээлэл өгнө</code> | <code>Хэвлэлийн хурал болно.</code> | <code>0.5448001623153687</code> |
204
+ | <code>Дотоод аудитын шалгалтаар 2012-2013 оны үйл ажиллагаанд 16 зөрчил илэрлээ</code> | <code>“Монголын Хөрөнгийн Бирж” ТӨХК-ийн Төлөөлөн удирдах зөвлөл болон Гүйцэтгэх удирдлагад 13 зөвлөмж өгөгдсөн байна.</code> | <code>0.4059729874134063</code> |
205
+ | <code>"хохирогчид ажлын байраар хангагдана"</code> | <code>"ажил олддог болно."</code> | <code>0.6021140813827515</code> |
206
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
207
+ ```json
208
+ {
209
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
210
+ }
211
+ ```
212
+
213
+ ### Evaluation Dataset
214
+
215
+ #### csv
216
+
217
+ * Dataset: csv
218
+ * Size: 77,201 evaluation samples
219
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
220
+ * Approximate statistics based on the first 1000 samples:
221
+ | | sentence1 | sentence2 | score |
222
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
223
+ | type | string | string | float |
224
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.53 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.68 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: -0.04</li><li>mean: 0.62</li><li>max: 1.0</li></ul> |
225
+ * Samples:
226
+ | sentence1 | sentence2 | score |
227
+ |:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|:--------------------------------|
228
+ | <code>Ченжүүд мэдээллийн сүлжээтэй лут холбогдсон байх юм</code> | <code>"Энд ноолуурын үнэ асуусан хэдэн нөхөд яваад байна" гээд хэлчихсэн бололтой юм</code> | <code>0.3234536349773407</code> |
229
+ | <code>Хий дэлбэрэлт гарсан тухай мэдээлэл байна уу?</code> | <code>Мэдээлэл цуглуулж байна.</code> | <code>0.3009476661682129</code> |
230
+ | <code>"Энэ нь хэн нэгнээр дамжуулж биш өөрөө сонгоно гэсэн утгатай.</code> | <code>Өөрөө сонгоно гэсэн утгатай."</code> | <code>0.770484447479248</code> |
231
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
232
+ ```json
233
+ {
234
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
235
+ }
236
+ ```
237
+
238
+ ### Training Hyperparameters
239
+ #### Non-Default Hyperparameters
240
+
241
+ - `eval_strategy`: steps
242
+ - `per_device_train_batch_size`: 16
243
+ - `per_device_eval_batch_size`: 16
244
+ - `num_train_epochs`: 5
245
+ - `warmup_ratio`: 0.1
246
+ - `fp16`: True
247
+ - `batch_sampler`: no_duplicates
248
+
249
+ #### All Hyperparameters
250
+ <details><summary>Click to expand</summary>
251
+
252
+ - `overwrite_output_dir`: False
253
+ - `do_predict`: False
254
+ - `eval_strategy`: steps
255
+ - `prediction_loss_only`: True
256
+ - `per_device_train_batch_size`: 16
257
+ - `per_device_eval_batch_size`: 16
258
+ - `per_gpu_train_batch_size`: None
259
+ - `per_gpu_eval_batch_size`: None
260
+ - `gradient_accumulation_steps`: 1
261
+ - `eval_accumulation_steps`: None
262
+ - `torch_empty_cache_steps`: None
263
+ - `learning_rate`: 5e-05
264
+ - `weight_decay`: 0.0
265
+ - `adam_beta1`: 0.9
266
+ - `adam_beta2`: 0.999
267
+ - `adam_epsilon`: 1e-08
268
+ - `max_grad_norm`: 1.0
269
+ - `num_train_epochs`: 5
270
+ - `max_steps`: -1
271
+ - `lr_scheduler_type`: linear
272
+ - `lr_scheduler_kwargs`: {}
273
+ - `warmup_ratio`: 0.1
274
+ - `warmup_steps`: 0
275
+ - `log_level`: passive
276
+ - `log_level_replica`: warning
277
+ - `log_on_each_node`: True
278
+ - `logging_nan_inf_filter`: True
279
+ - `save_safetensors`: True
280
+ - `save_on_each_node`: False
281
+ - `save_only_model`: False
282
+ - `restore_callback_states_from_checkpoint`: False
283
+ - `no_cuda`: False
284
+ - `use_cpu`: False
285
+ - `use_mps_device`: False
286
+ - `seed`: 42
287
+ - `data_seed`: None
288
+ - `jit_mode_eval`: False
289
+ - `use_ipex`: False
290
+ - `bf16`: False
291
+ - `fp16`: True
292
+ - `fp16_opt_level`: O1
293
+ - `half_precision_backend`: auto
294
+ - `bf16_full_eval`: False
295
+ - `fp16_full_eval`: False
296
+ - `tf32`: None
297
+ - `local_rank`: 0
298
+ - `ddp_backend`: None
299
+ - `tpu_num_cores`: None
300
+ - `tpu_metrics_debug`: False
301
+ - `debug`: []
302
+ - `dataloader_drop_last`: False
303
+ - `dataloader_num_workers`: 0
304
+ - `dataloader_prefetch_factor`: None
305
+ - `past_index`: -1
306
+ - `disable_tqdm`: False
307
+ - `remove_unused_columns`: True
308
+ - `label_names`: None
309
+ - `load_best_model_at_end`: False
310
+ - `ignore_data_skip`: False
311
+ - `fsdp`: []
312
+ - `fsdp_min_num_params`: 0
313
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
314
+ - `fsdp_transformer_layer_cls_to_wrap`: None
315
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
316
+ - `deepspeed`: None
317
+ - `label_smoothing_factor`: 0.0
318
+ - `optim`: adamw_torch
319
+ - `optim_args`: None
320
+ - `adafactor`: False
321
+ - `group_by_length`: False
322
+ - `length_column_name`: length
323
+ - `ddp_find_unused_parameters`: None
324
+ - `ddp_bucket_cap_mb`: None
325
+ - `ddp_broadcast_buffers`: False
326
+ - `dataloader_pin_memory`: True
327
+ - `dataloader_persistent_workers`: False
328
+ - `skip_memory_metrics`: True
329
+ - `use_legacy_prediction_loop`: False
330
+ - `push_to_hub`: False
331
+ - `resume_from_checkpoint`: None
332
+ - `hub_model_id`: None
333
+ - `hub_strategy`: every_save
334
+ - `hub_private_repo`: None
335
+ - `hub_always_push`: False
336
+ - `gradient_checkpointing`: False
337
+ - `gradient_checkpointing_kwargs`: None
338
+ - `include_inputs_for_metrics`: False
339
+ - `include_for_metrics`: []
340
+ - `eval_do_concat_batches`: True
341
+ - `fp16_backend`: auto
342
+ - `push_to_hub_model_id`: None
343
+ - `push_to_hub_organization`: None
344
+ - `mp_parameters`:
345
+ - `auto_find_batch_size`: False
346
+ - `full_determinism`: False
347
+ - `torchdynamo`: None
348
+ - `ray_scope`: last
349
+ - `ddp_timeout`: 1800
350
+ - `torch_compile`: False
351
+ - `torch_compile_backend`: None
352
+ - `torch_compile_mode`: None
353
+ - `dispatch_batches`: None
354
+ - `split_batches`: None
355
+ - `include_tokens_per_second`: False
356
+ - `include_num_input_tokens_seen`: False
357
+ - `neftune_noise_alpha`: None
358
+ - `optim_target_modules`: None
359
+ - `batch_eval_metrics`: False
360
+ - `eval_on_start`: False
361
+ - `use_liger_kernel`: False
362
+ - `eval_use_gather_object`: False
363
+ - `average_tokens_across_devices`: False
364
+ - `prompts`: None
365
+ - `batch_sampler`: no_duplicates
366
+ - `multi_dataset_batch_sampler`: proportional
367
+
368
+ </details>
369
+
370
+ ### Training Logs
371
+ | Epoch | Step | Training Loss | Validation Loss | dev-t_spearman_cosine | test-t_spearman_cosine |
372
+ |:------:|:-----:|:-------------:|:---------------:|:---------------------:|:----------------------:|
373
+ | 0 | 0 | - | - | 1.0000 | - |
374
+ | 0.1727 | 500 | 0.0046 | - | - | - |
375
+ | 0.3454 | 1000 | 0.0054 | 0.0042 | 0.9549 | - |
376
+ | 0.5181 | 1500 | 0.0069 | - | - | - |
377
+ | 0.6908 | 2000 | 0.008 | 0.0067 | 0.9298 | - |
378
+ | 0.8636 | 2500 | 0.0076 | - | - | - |
379
+ | 1.0363 | 3000 | 0.0075 | 0.0065 | 0.9317 | - |
380
+ | 1.2090 | 3500 | 0.0069 | - | - | - |
381
+ | 1.3817 | 4000 | 0.0063 | 0.0063 | 0.9366 | - |
382
+ | 1.5544 | 4500 | 0.0055 | - | - | - |
383
+ | 1.7271 | 5000 | 0.0049 | 0.0057 | 0.9411 | - |
384
+ | 1.8998 | 5500 | 0.0045 | - | - | - |
385
+ | 2.0725 | 6000 | 0.0045 | 0.0056 | 0.9405 | - |
386
+ | 2.2453 | 6500 | 0.004 | - | - | - |
387
+ | 2.4180 | 7000 | 0.0038 | 0.0053 | 0.9432 | - |
388
+ | 2.5907 | 7500 | 0.0034 | - | - | - |
389
+ | 2.7634 | 8000 | 0.0032 | 0.0053 | 0.9448 | - |
390
+ | 2.9361 | 8500 | 0.0029 | - | - | - |
391
+ | 3.1088 | 9000 | 0.0028 | 0.0051 | 0.9459 | - |
392
+ | 3.2815 | 9500 | 0.0025 | - | - | - |
393
+ | 3.4542 | 10000 | 0.0023 | 0.0047 | 0.9498 | - |
394
+ | 3.6269 | 10500 | 0.0022 | - | - | - |
395
+ | 3.7997 | 11000 | 0.0021 | 0.0046 | 0.9510 | - |
396
+ | 3.9724 | 11500 | 0.0019 | - | - | - |
397
+ | 4.1451 | 12000 | 0.0019 | 0.0046 | 0.9525 | - |
398
+ | 4.3178 | 12500 | 0.0016 | - | - | - |
399
+ | 4.4905 | 13000 | 0.0016 | 0.0045 | 0.9528 | - |
400
+ | 4.6632 | 13500 | 0.0014 | - | - | - |
401
+ | 4.8359 | 14000 | 0.0013 | 0.0044 | 0.9538 | - |
402
+ | 5.0 | 14475 | - | - | - | 0.9567 |
403
+
404
+
405
+ ### Framework Versions
406
+ - Python: 3.10.12
407
+ - Sentence Transformers: 3.3.1
408
+ - Transformers: 4.47.1
409
+ - PyTorch: 2.5.1+cu121
410
+ - Accelerate: 1.2.1
411
+ - Datasets: 3.2.0
412
+ - Tokenizers: 0.21.0
413
+
414
+ ## Citation
415
+
416
+ ### BibTeX
417
+
418
+ #### Sentence Transformers
419
+ ```bibtex
420
+ @inproceedings{reimers-2019-sentence-bert,
421
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
422
+ author = "Reimers, Nils and Gurevych, Iryna",
423
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
424
+ month = "11",
425
+ year = "2019",
426
+ publisher = "Association for Computational Linguistics",
427
+ url = "https://arxiv.org/abs/1908.10084",
428
+ }
429
+ ```
430
+
431
+ <!--
432
+ ## Glossary
433
+
434
+ *Clearly define terms in order to be accessible across audiences.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Authors
439
+
440
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Contact
445
+
446
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
447
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-minilm-l12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02bcf1dc4ce261d937c876cd7b5bb8295150e25ae05083db7c4645815868cd8
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260