SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mn_v2")
# Run inference
sentences = [
    '"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"',
    '"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."',
    'БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric dev-t test-t
pearson_cosine 0.9547 0.9564
spearman_cosine 0.9538 0.9567

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 77,201 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 16.02 tokens
    • max: 96 tokens
    • min: 3 tokens
    • mean: 14.66 tokens
    • max: 87 tokens
    • min: -0.14
    • mean: 0.63
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Маргааш мэдээлэл өгнө Хэвлэлийн хурал болно. 0.5448001623153687
    Дотоод аудитын шалгалтаар 2012-2013 оны үйл ажиллагаанд 16 зөрчил илэрлээ “Монголын Хөрөнгийн Бирж” ТӨХК-ийн Төлөөлөн удирдах зөвлөл болон Гүйцэтгэх удирдлагад 13 зөвлөмж өгөгдсөн байна. 0.4059729874134063
    "хохирогчид ажлын байраар хангагдана" "ажил олддог болно." 0.6021140813827515
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 77,201 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 16.53 tokens
    • max: 85 tokens
    • min: 3 tokens
    • mean: 14.68 tokens
    • max: 83 tokens
    • min: -0.04
    • mean: 0.62
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Ченжүүд мэдээллийн сүлжээтэй лут холбогдсон байх юм "Энд ноолуурын үнэ асуусан хэдэн нөхөд яваад байна" гээд хэлчихсэн бололтой юм 0.3234536349773407
    Хий дэлбэрэлт гарсан тухай мэдээлэл байна уу? Мэдээлэл цуглуулж байна. 0.3009476661682129
    "Энэ нь хэн нэгнээр дамжуулж биш өөрөө сонгоно гэсэн утгатай. Өөрөө сонгоно гэсэн утгатай." 0.770484447479248
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss dev-t_spearman_cosine test-t_spearman_cosine
0 0 - - 1.0000 -
0.1727 500 0.0046 - - -
0.3454 1000 0.0054 0.0042 0.9549 -
0.5181 1500 0.0069 - - -
0.6908 2000 0.008 0.0067 0.9298 -
0.8636 2500 0.0076 - - -
1.0363 3000 0.0075 0.0065 0.9317 -
1.2090 3500 0.0069 - - -
1.3817 4000 0.0063 0.0063 0.9366 -
1.5544 4500 0.0055 - - -
1.7271 5000 0.0049 0.0057 0.9411 -
1.8998 5500 0.0045 - - -
2.0725 6000 0.0045 0.0056 0.9405 -
2.2453 6500 0.004 - - -
2.4180 7000 0.0038 0.0053 0.9432 -
2.5907 7500 0.0034 - - -
2.7634 8000 0.0032 0.0053 0.9448 -
2.9361 8500 0.0029 - - -
3.1088 9000 0.0028 0.0051 0.9459 -
3.2815 9500 0.0025 - - -
3.4542 10000 0.0023 0.0047 0.9498 -
3.6269 10500 0.0022 - - -
3.7997 11000 0.0021 0.0046 0.9510 -
3.9724 11500 0.0019 - - -
4.1451 12000 0.0019 0.0046 0.9525 -
4.3178 12500 0.0016 - - -
4.4905 13000 0.0016 0.0045 0.9528 -
4.6632 13500 0.0014 - - -
4.8359 14000 0.0013 0.0044 0.9538 -
5.0 14475 - - - 0.9567

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
15
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gmunkhtur/paraphrase-mongolian-minilm-mn_v2

Evaluation results