metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:77201
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: '"17 тэрбумын хэрэгт холбогдсон хүмүүсийг шалгаж байна."'
sentences:
- Шинэ сайд томилогдлоо."
- '"Авлига авсан хүмүүсийг шалгаж байна."'
- Шүүхийг засварлах мөнгө байхгүй байна."
- source_sentence: '"Гэмт хэрэг үйлдсэн. "'
sentences:
- LIKE дар.
- Саусгоби сэндс компанийн хэргээр мөрдөн байцаалт явагдаж байна."
- '"Гэмтэл учруулсан."'
- source_sentence: '"Иргэдийн хүсэлтийг шинэчлэлийн Засгийн газар хэрэгжүүлнэ."'
sentences:
- '"Засгийн газар иргэдийн хүсэлтийг хэрэгжүүлэх бодолтой байна."'
- '"Ц.Болд албан тушаалаа ашиглан төсвөөс мөнгө завшсан байна."'
- Шүүх хараат бус байх ёстой."
- source_sentence: '"Ам.долларын ханш суларснаас бэрхшээл үүсэж байна."'
sentences:
- '"тушаал"'
- Шүүхийн шийдвэрийн талаарх судалгаа хийнэ."
- '"Валютын ханшийн өөрчлөлтөөс болж бэрхшээл гарч байна."'
- source_sentence: '"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"'
sentences:
- БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.
- Жастин Бибер, Кэти Перри нарын элэглэл хамгийн түрүүнд дүрслэгдэх аж.
- '"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dev t
type: dev-t
metrics:
- type: pearson_cosine
value: 0.9547459589724314
name: Pearson Cosine
- type: spearman_cosine
value: 0.9538075641510714
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: test t
type: test-t
metrics:
- type: pearson_cosine
value: 0.956384303059334
name: Pearson Cosine
- type: spearman_cosine
value: 0.9566981709702497
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mn_v2")
# Run inference
sentences = [
'"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"',
'"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."',
'БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
dev-t
andtest-t
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | dev-t | test-t |
---|---|---|
pearson_cosine | 0.9547 | 0.9564 |
spearman_cosine | 0.9538 | 0.9567 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 77,201 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 16.02 tokens
- max: 96 tokens
- min: 3 tokens
- mean: 14.66 tokens
- max: 87 tokens
- min: -0.14
- mean: 0.63
- max: 1.0
- Samples:
sentence1 sentence2 score Маргааш мэдээлэл өгнө
Хэвлэлийн хурал болно.
0.5448001623153687
Дотоод аудитын шалгалтаар 2012-2013 оны үйл ажиллагаанд 16 зөрчил илэрлээ
“Монголын Хөрөнгийн Бирж” ТӨХК-ийн Төлөөлөн удирдах зөвлөл болон Гүйцэтгэх удирдлагад 13 зөвлөмж өгөгдсөн байна.
0.4059729874134063
"хохирогчид ажлын байраар хангагдана"
"ажил олддог болно."
0.6021140813827515
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 77,201 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 16.53 tokens
- max: 85 tokens
- min: 3 tokens
- mean: 14.68 tokens
- max: 83 tokens
- min: -0.04
- mean: 0.62
- max: 1.0
- Samples:
sentence1 sentence2 score Ченжүүд мэдээллийн сүлжээтэй лут холбогдсон байх юм
"Энд ноолуурын үнэ асуусан хэдэн нөхөд яваад байна" гээд хэлчихсэн бололтой юм
0.3234536349773407
Хий дэлбэрэлт гарсан тухай мэдээлэл байна уу?
Мэдээлэл цуглуулж байна.
0.3009476661682129
"Энэ нь хэн нэгнээр дамжуулж биш өөрөө сонгоно гэсэн утгатай.
Өөрөө сонгоно гэсэн утгатай."
0.770484447479248
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dev-t_spearman_cosine | test-t_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | - | 1.0000 | - |
0.1727 | 500 | 0.0046 | - | - | - |
0.3454 | 1000 | 0.0054 | 0.0042 | 0.9549 | - |
0.5181 | 1500 | 0.0069 | - | - | - |
0.6908 | 2000 | 0.008 | 0.0067 | 0.9298 | - |
0.8636 | 2500 | 0.0076 | - | - | - |
1.0363 | 3000 | 0.0075 | 0.0065 | 0.9317 | - |
1.2090 | 3500 | 0.0069 | - | - | - |
1.3817 | 4000 | 0.0063 | 0.0063 | 0.9366 | - |
1.5544 | 4500 | 0.0055 | - | - | - |
1.7271 | 5000 | 0.0049 | 0.0057 | 0.9411 | - |
1.8998 | 5500 | 0.0045 | - | - | - |
2.0725 | 6000 | 0.0045 | 0.0056 | 0.9405 | - |
2.2453 | 6500 | 0.004 | - | - | - |
2.4180 | 7000 | 0.0038 | 0.0053 | 0.9432 | - |
2.5907 | 7500 | 0.0034 | - | - | - |
2.7634 | 8000 | 0.0032 | 0.0053 | 0.9448 | - |
2.9361 | 8500 | 0.0029 | - | - | - |
3.1088 | 9000 | 0.0028 | 0.0051 | 0.9459 | - |
3.2815 | 9500 | 0.0025 | - | - | - |
3.4542 | 10000 | 0.0023 | 0.0047 | 0.9498 | - |
3.6269 | 10500 | 0.0022 | - | - | - |
3.7997 | 11000 | 0.0021 | 0.0046 | 0.9510 | - |
3.9724 | 11500 | 0.0019 | - | - | - |
4.1451 | 12000 | 0.0019 | 0.0046 | 0.9525 | - |
4.3178 | 12500 | 0.0016 | - | - | - |
4.4905 | 13000 | 0.0016 | 0.0045 | 0.9528 | - |
4.6632 | 13500 | 0.0014 | - | - | - |
4.8359 | 14000 | 0.0013 | 0.0044 | 0.9538 | - |
5.0 | 14475 | - | - | - | 0.9567 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}