|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:77201 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: '"17 тэрбумын хэрэгт холбогдсон хүмүүсийг шалгаж байна."' |
|
sentences: |
|
- Шинэ сайд томилогдлоо." |
|
- '"Авлига авсан хүмүүсийг шалгаж байна."' |
|
- Шүүхийг засварлах мөнгө байхгүй байна." |
|
- source_sentence: '"Гэмт хэрэг үйлдсэн. "' |
|
sentences: |
|
- LIKE дар. |
|
- Саусгоби сэндс компанийн хэргээр мөрдөн байцаалт явагдаж байна." |
|
- '"Гэмтэл учруулсан."' |
|
- source_sentence: '"Иргэдийн хүсэлтийг шинэчлэлийн Засгийн газар хэрэгжүүлнэ."' |
|
sentences: |
|
- '"Засгийн газар иргэдийн хүсэлтийг хэрэгжүүлэх бодолтой байна."' |
|
- '"Ц.Болд албан тушаалаа ашиглан төсвөөс мөнгө завшсан байна."' |
|
- Шүүх хараат бус байх ёстой." |
|
- source_sentence: '"Ам.долларын ханш суларснаас бэрхшээл үүсэж байна."' |
|
sentences: |
|
- '"тушаал"' |
|
- Шүүхийн шийдвэрийн талаарх судалгаа хийнэ." |
|
- '"Валютын ханшийн өөрчлөлтөөс болж бэрхшээл гарч байна."' |
|
- source_sentence: '"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"' |
|
sentences: |
|
- БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан. |
|
- Жастин Бибер, Кэти Перри нарын элэглэл хамгийн түрүүнд дүрслэгдэх аж. |
|
- '"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dev t |
|
type: dev-t |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9547459589724314 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9538075641510714 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: test t |
|
type: test-t |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.956384303059334 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9566981709702497 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- csv |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mn_v2") |
|
# Run inference |
|
sentences = [ |
|
'"Сэтгүүлч анд маань хоёр дахь номоо хэвлэлтээс гаргажээ"', |
|
'"Л.Болормаагийн хоёр дахь ном “Завгүй” хэмээн нэрийджээ."', |
|
'БНХАУ-ын аж үйлдвэрлэлийн үйлдвэрлэлт буурсан.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `dev-t` and `test-t` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | dev-t | test-t | |
|
|:--------------------|:-----------|:-----------| |
|
| pearson_cosine | 0.9547 | 0.9564 | |
|
| **spearman_cosine** | **0.9538** | **0.9567** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### csv |
|
|
|
* Dataset: csv |
|
* Size: 77,201 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 16.02 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.66 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: -0.14</li><li>mean: 0.63</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Маргааш мэдээлэл өгнө</code> | <code>Хэвлэлийн хурал болно.</code> | <code>0.5448001623153687</code> | |
|
| <code>Дотоод аудитын шалгалтаар 2012-2013 оны үйл ажиллагаанд 16 зөрчил илэрлээ</code> | <code>“Монголын Хөрөнгийн Бирж” ТӨХК-ийн Төлөөлөн удирдах зөвлөл болон Гүйцэтгэх удирдлагад 13 зөвлөмж өгөгдсөн байна.</code> | <code>0.4059729874134063</code> | |
|
| <code>"хохирогчид ажлын байраар хангагдана"</code> | <code>"ажил олддог болно."</code> | <code>0.6021140813827515</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### csv |
|
|
|
* Dataset: csv |
|
* Size: 77,201 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 16.53 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.68 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: -0.04</li><li>mean: 0.62</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Ченжүүд мэдээллийн сүлжээтэй лут холбогдсон байх юм</code> | <code>"Энд ноолуурын үнэ асуусан хэдэн нөхөд яваад байна" гээд хэлчихсэн бололтой юм</code> | <code>0.3234536349773407</code> | |
|
| <code>Хий дэлбэрэлт гарсан тухай мэдээлэл байна уу?</code> | <code>Мэдээлэл цуглуулж байна.</code> | <code>0.3009476661682129</code> | |
|
| <code>"Энэ нь хэн нэгнээр дамжуулж биш өөрөө сонгоно гэсэн утгатай.</code> | <code>Өөрөө сонгоно гэсэн утгатай."</code> | <code>0.770484447479248</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | dev-t_spearman_cosine | test-t_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:---------------:|:---------------------:|:----------------------:| |
|
| 0 | 0 | - | - | 1.0000 | - | |
|
| 0.1727 | 500 | 0.0046 | - | - | - | |
|
| 0.3454 | 1000 | 0.0054 | 0.0042 | 0.9549 | - | |
|
| 0.5181 | 1500 | 0.0069 | - | - | - | |
|
| 0.6908 | 2000 | 0.008 | 0.0067 | 0.9298 | - | |
|
| 0.8636 | 2500 | 0.0076 | - | - | - | |
|
| 1.0363 | 3000 | 0.0075 | 0.0065 | 0.9317 | - | |
|
| 1.2090 | 3500 | 0.0069 | - | - | - | |
|
| 1.3817 | 4000 | 0.0063 | 0.0063 | 0.9366 | - | |
|
| 1.5544 | 4500 | 0.0055 | - | - | - | |
|
| 1.7271 | 5000 | 0.0049 | 0.0057 | 0.9411 | - | |
|
| 1.8998 | 5500 | 0.0045 | - | - | - | |
|
| 2.0725 | 6000 | 0.0045 | 0.0056 | 0.9405 | - | |
|
| 2.2453 | 6500 | 0.004 | - | - | - | |
|
| 2.4180 | 7000 | 0.0038 | 0.0053 | 0.9432 | - | |
|
| 2.5907 | 7500 | 0.0034 | - | - | - | |
|
| 2.7634 | 8000 | 0.0032 | 0.0053 | 0.9448 | - | |
|
| 2.9361 | 8500 | 0.0029 | - | - | - | |
|
| 3.1088 | 9000 | 0.0028 | 0.0051 | 0.9459 | - | |
|
| 3.2815 | 9500 | 0.0025 | - | - | - | |
|
| 3.4542 | 10000 | 0.0023 | 0.0047 | 0.9498 | - | |
|
| 3.6269 | 10500 | 0.0022 | - | - | - | |
|
| 3.7997 | 11000 | 0.0021 | 0.0046 | 0.9510 | - | |
|
| 3.9724 | 11500 | 0.0019 | - | - | - | |
|
| 4.1451 | 12000 | 0.0019 | 0.0046 | 0.9525 | - | |
|
| 4.3178 | 12500 | 0.0016 | - | - | - | |
|
| 4.4905 | 13000 | 0.0016 | 0.0045 | 0.9528 | - | |
|
| 4.6632 | 13500 | 0.0014 | - | - | - | |
|
| 4.8359 | 14000 | 0.0013 | 0.0044 | 0.9538 | - | |
|
| 5.0 | 14475 | - | - | - | 0.9567 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |