results

This model is a fine-tuned version of meta-llama/Prompt-Guard-86M on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3940
  • Accuracy: 0.8083
  • Precision: 0.8493
  • Recall: 0.8083
  • F1: 0.8004

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4309 0.9895 59 0.3940 0.8083 0.8493 0.8083 0.8004
0.2471 1.9958 119 0.4489 0.8667 0.8809 0.8667 0.8646
0.308 2.9853 178 0.4891 0.875 0.8890 0.875 0.8745
0.0769 3.9916 238 0.5789 0.875 0.8763 0.875 0.8751
0.0185 4.9979 298 0.5860 0.9083 0.9091 0.9083 0.9082
0.1513 5.9874 357 0.7945 0.8417 0.8548 0.8417 0.8411
0.0262 6.9937 417 0.7072 0.8917 0.8917 0.8917 0.8916
0.0011 8.0 477 0.6887 0.9083 0.9108 0.9083 0.9080
0.0008 8.9895 536 0.7496 0.8917 0.8917 0.8917 0.8916
0.0007 9.8952 590 0.7500 0.9 0.9003 0.9 0.8999

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
116
Safetensors
Model size
279M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gnurt2041/Prompt-Guard-86M-tuned

Finetuned
(3)
this model