results
This model is a fine-tuned version of facebook/roberta-hate-speech-dynabench-r4-target on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1543
- Accuracy: 0.975
- Precision: 0.9761
- Recall: 0.975
- F1: 0.9750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.4904 | 0.9895 | 59 | 0.3492 | 0.9 | 0.9015 | 0.9 | 0.8997 |
0.1344 | 1.9958 | 119 | 0.3267 | 0.9333 | 0.9374 | 0.9333 | 0.9330 |
0.0614 | 2.9853 | 178 | 0.2695 | 0.9333 | 0.9339 | 0.9333 | 0.9334 |
0.041 | 3.9916 | 238 | 0.2203 | 0.9583 | 0.9614 | 0.9583 | 0.9582 |
0.0674 | 4.9979 | 298 | 0.2079 | 0.9667 | 0.9687 | 0.9667 | 0.9666 |
0.0006 | 5.9874 | 357 | 0.1543 | 0.975 | 0.9761 | 0.975 | 0.9750 |
0.0004 | 6.9937 | 417 | 0.1883 | 0.975 | 0.9751 | 0.975 | 0.9750 |
0.0002 | 8.0 | 477 | 0.1628 | 0.9667 | 0.9667 | 0.9667 | 0.9667 |
0.0001 | 8.9895 | 536 | 0.2980 | 0.9667 | 0.9687 | 0.9667 | 0.9666 |
0.0001 | 9.8952 | 590 | 0.2377 | 0.975 | 0.9761 | 0.975 | 0.9750 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.