gokuls's picture
End of training
974f79d
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_mnli_128
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
config: mnli
split: validation_matched
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5957078925956062
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_mnli_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8825
- Accuracy: 0.5957
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0129 | 1.0 | 3068 | 0.9529 | 0.5438 |
| 0.9284 | 2.0 | 6136 | 0.9266 | 0.5593 |
| 0.8999 | 3.0 | 9204 | 0.9055 | 0.5775 |
| 0.8803 | 4.0 | 12272 | 0.8951 | 0.5854 |
| 0.8637 | 5.0 | 15340 | 0.8991 | 0.5886 |
| 0.8472 | 6.0 | 18408 | 0.8907 | 0.5913 |
| 0.8309 | 7.0 | 21476 | 0.8940 | 0.5928 |
| 0.814 | 8.0 | 24544 | 0.8880 | 0.5988 |
| 0.7988 | 9.0 | 27612 | 0.8776 | 0.6022 |
| 0.7825 | 10.0 | 30680 | 0.8958 | 0.6022 |
| 0.7662 | 11.0 | 33748 | 0.8835 | 0.6061 |
| 0.7504 | 12.0 | 36816 | 0.9004 | 0.6041 |
| 0.7359 | 13.0 | 39884 | 0.9252 | 0.6 |
| 0.7204 | 14.0 | 42952 | 0.9131 | 0.6007 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2