|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: mobilebert_sa_GLUE_Experiment_qqp_128 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE QQP |
|
type: glue |
|
config: qqp |
|
split: validation |
|
args: qqp |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7784071234232006 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6885884111369878 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mobilebert_sa_GLUE_Experiment_qqp_128 |
|
|
|
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4700 |
|
- Accuracy: 0.7784 |
|
- F1: 0.6886 |
|
- Combined Score: 0.7335 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.5294 | 1.0 | 2843 | 0.5076 | 0.7512 | 0.6636 | 0.7074 | |
|
| 0.4791 | 2.0 | 5686 | 0.4889 | 0.7613 | 0.6369 | 0.6991 | |
|
| 0.4622 | 3.0 | 8529 | 0.4821 | 0.7657 | 0.6475 | 0.7066 | |
|
| 0.4463 | 4.0 | 11372 | 0.4831 | 0.7694 | 0.6730 | 0.7212 | |
|
| 0.4288 | 5.0 | 14215 | 0.4724 | 0.7752 | 0.6784 | 0.7268 | |
|
| 0.4129 | 6.0 | 17058 | 0.4806 | 0.7749 | 0.6893 | 0.7321 | |
|
| 0.3969 | 7.0 | 19901 | 0.4700 | 0.7784 | 0.6886 | 0.7335 | |
|
| 0.3813 | 8.0 | 22744 | 0.4802 | 0.7790 | 0.6962 | 0.7376 | |
|
| 0.3664 | 9.0 | 25587 | 0.4765 | 0.7805 | 0.6952 | 0.7378 | |
|
| 0.352 | 10.0 | 28430 | 0.4965 | 0.7768 | 0.7086 | 0.7427 | |
|
| 0.3381 | 11.0 | 31273 | 0.4895 | 0.7845 | 0.6960 | 0.7403 | |
|
| 0.3258 | 12.0 | 34116 | 0.5092 | 0.7844 | 0.7043 | 0.7444 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|