gokuls's picture
End of training
8c78512
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: mobilebert_sa_GLUE_Experiment_wnli_128
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          config: wnli
          split: validation
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

mobilebert_sa_GLUE_Experiment_wnli_128

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6907
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6938 1.0 5 0.6911 0.5634
0.6933 2.0 10 0.6917 0.5634
0.6931 3.0 15 0.6920 0.5634
0.693 4.0 20 0.6915 0.5634
0.693 5.0 25 0.6911 0.5634
0.693 6.0 30 0.6909 0.5634
0.693 7.0 35 0.6907 0.5634
0.693 8.0 40 0.6911 0.5634
0.6931 9.0 45 0.6908 0.5634
0.693 10.0 50 0.6912 0.5634
0.693 11.0 55 0.6918 0.5634
0.693 12.0 60 0.6918 0.5634

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.8.0
  • Tokenizers 0.13.2