bert_uncased_L-2_H-128_A-2_qnli

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4352
  • Accuracy: 0.8005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5442 1.0 410 0.4932 0.7679
0.4861 2.0 820 0.4810 0.7692
0.4609 3.0 1230 0.4527 0.7882
0.4422 4.0 1640 0.4639 0.7803
0.4256 5.0 2050 0.4744 0.7770
0.409 6.0 2460 0.4702 0.7809
0.392 7.0 2870 0.4352 0.8005
0.3772 8.0 3280 0.4429 0.7970
0.3608 9.0 3690 0.4630 0.7875
0.3459 10.0 4100 0.5137 0.7688
0.3354 11.0 4510 0.4836 0.7880
0.3213 12.0 4920 0.4981 0.7842

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
104
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_qnli

Finetuned
(50)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_qnli

Evaluation results