model_hh_shp4_200 / README.md
guoyu-zhang's picture
model_hh_shp4_200
1355412 verified
---
license: llama2
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-chat-hf
model-index:
- name: model_hh_shp4_200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_hh_shp4_200
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4445
- Rewards/chosen: -0.1401
- Rewards/rejected: -1.3796
- Rewards/accuracies: 0.6300
- Rewards/margins: 1.2395
- Logps/rejected: -230.1749
- Logps/chosen: -224.4940
- Logits/rejected: -0.7701
- Logits/chosen: -0.7769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0 | 8.0 | 100 | 1.4330 | -0.1080 | -1.3964 | 0.6200 | 1.2883 | -230.1935 | -224.4584 | -0.7684 | -0.7753 |
| 0.0 | 16.0 | 200 | 1.4371 | -0.0911 | -1.3887 | 0.6400 | 1.2976 | -230.1849 | -224.4396 | -0.7692 | -0.7762 |
| 0.0 | 24.0 | 300 | 1.4477 | -0.1125 | -1.3921 | 0.6200 | 1.2795 | -230.1887 | -224.4634 | -0.7693 | -0.7763 |
| 0.0 | 32.0 | 400 | 1.4521 | -0.1143 | -1.4167 | 0.6200 | 1.3024 | -230.2161 | -224.4653 | -0.7696 | -0.7763 |
| 0.0 | 40.0 | 500 | 1.4631 | -0.1153 | -1.3806 | 0.6200 | 1.2653 | -230.1759 | -224.4665 | -0.7701 | -0.7771 |
| 0.0 | 48.0 | 600 | 1.4455 | -0.1180 | -1.3970 | 0.6300 | 1.2791 | -230.1942 | -224.4695 | -0.7698 | -0.7769 |
| 0.0 | 56.0 | 700 | 1.4292 | -0.0800 | -1.3720 | 0.6100 | 1.2920 | -230.1664 | -224.4273 | -0.7704 | -0.7775 |
| 0.0 | 64.0 | 800 | 1.4434 | -0.0943 | -1.3739 | 0.6200 | 1.2796 | -230.1686 | -224.4432 | -0.7703 | -0.7773 |
| 0.0 | 72.0 | 900 | 1.4493 | -0.1016 | -1.4044 | 0.6100 | 1.3028 | -230.2024 | -224.4513 | -0.7704 | -0.7773 |
| 0.0 | 80.0 | 1000 | 1.4445 | -0.1401 | -1.3796 | 0.6300 | 1.2395 | -230.1749 | -224.4940 | -0.7701 | -0.7769 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2