tags: | |
- autotrain | |
- tabular | |
- regression | |
- tabular-regression | |
datasets: | |
- gvozdev/autotrain-data-autotrain-ratings | |
# Model Trained Using AutoTrain | |
- Problem type: Tabular regression | |
## Validation Metrics | |
- r2: 0.004852553257630565 | |
- mse: 1.704782407585897 | |
- mae: 1.0301575550030646 | |
- rmse: 1.3056731626199174 | |
- rmsle: 0.1919556417083651 | |
- loss: 1.3056731626199174 | |
## Best Params | |
- learning_rate: 0.16113054215755473 | |
- reg_lambda: 3.3566663737449463e-06 | |
- reg_alpha: 1.999845686956423e-05 | |
- subsample: 0.3521158025399591 | |
- colsample_bytree: 0.1661721364825762 | |
- max_depth: 2 | |
- early_stopping_rounds: 172 | |
- n_estimators: 20000 | |
- eval_metric: rmse | |
## Usage | |
```python | |
import json | |
import joblib | |
import pandas as pd | |
model = joblib.load('model.joblib') | |
config = json.load(open('config.json')) | |
features = config['features'] | |
# data = pd.read_csv("data.csv") | |
data = data[features] | |
predictions = model.predict(data) # or model.predict_proba(data) | |
# predictions can be converted to original labels using label_encoders.pkl | |
``` | |