gyr66's picture
Update README.md
66d3cf2
metadata
language:
  - zh
datasets:
  - gyr66/privacy_detection
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RoBERTa-ext-large-chinese-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: gyr66/privacy_detection
          type: gyr66/privacy_detection
          config: privacy_detection
          split: train
          args: privacy_detection
        metrics:
          - name: Precision
            type: precision
            value: 0.7052
          - name: Recall
            type: recall
            value: 0.7606
          - name: F1
            type: f1
            value: 0.7318
          - name: Accuracy
            type: accuracy
            value: 0.9138

RoBERTa-ext-large-chinese-finetuned-ner

This model is a fine-tuned version of chinese-roberta-wwm-ext-large on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7697
  • Precision: 0.7052
  • Recall: 0.7606
  • F1: 0.7318
  • Accuracy: 0.9138

Model description

The model is used for competition: "https://www.datafountain.cn/competitions/472"

Training and evaluation data

The training and evaluation data is from gyr66/privacy_detection dataset.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 28
  • eval_batch_size: 28
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.2