gyr66's picture
Update README.md
777c104
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
datasets:
  - gyr66/privacy_detection
language:
  - zh
model-index:
  - name: RoBERTa-ext-large-crf-chinese-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: gyr66/privacy_detection
          type: gyr66/privacy_detection
          config: privacy_detection
          split: train
          args: privacy_detection
        metrics:
          - name: Precision
            type: precision
            value: 0.6813
          - name: Recall
            type: recall
            value: 0.7573
          - name: F1
            type: f1
            value: 0.7173
          - name: Accuracy
            type: accuracy
            value: 0.9639

RoBERTa-ext-large-crf-chinese-finetuned-ner

This model is a fine-tuned version of chinese-roberta-wwm-ext-large on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7186
  • Precision: 0.6813
  • Recall: 0.7573
  • F1: 0.7173
  • Accuracy: 0.9639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0197 1.0 503 0.6375 0.6663 0.7314 0.6973 0.9621
0.0251 2.0 1006 0.6048 0.6494 0.7435 0.6933 0.9611
0.0176 3.0 1509 0.6196 0.6669 0.7389 0.7011 0.9618
0.0116 4.0 2012 0.6361 0.6511 0.7560 0.6997 0.9624
0.0082 5.0 2515 0.6682 0.6746 0.7387 0.7052 0.9622
0.0067 6.0 3018 0.6587 0.6715 0.7409 0.7045 0.9635
0.0046 7.0 3521 0.6846 0.6770 0.7613 0.7167 0.9636
0.0019 8.0 4024 0.7081 0.6766 0.7510 0.7118 0.9630
0.0014 9.0 4527 0.7064 0.6812 0.7553 0.7163 0.9641
0.001 10.0 5030 0.7186 0.6813 0.7573 0.7173 0.9639

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0