chinese-roberta-wwm-ext-large-lora-ner

This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext-large on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3302
  • Precision: 0.6010
  • Recall: 0.7258
  • F1: 0.6575
  • Accuracy: 0.9106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 28
  • eval_batch_size: 56
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.729 1.0 72 0.3562 0.4495 0.5818 0.5072 0.8865
0.3155 2.0 144 0.3243 0.5155 0.6636 0.5803 0.8972
0.2561 3.0 216 0.3021 0.5599 0.7004 0.6223 0.9067
0.2283 4.0 288 0.3049 0.5670 0.6984 0.6259 0.9044
0.1952 5.0 360 0.3144 0.5836 0.7145 0.6424 0.9076
0.174 6.0 432 0.3157 0.5787 0.7183 0.6410 0.9063
0.155 7.0 504 0.3223 0.5966 0.7246 0.6544 0.9083
0.1436 8.0 576 0.3267 0.5921 0.7210 0.6502 0.9088
0.1298 9.0 648 0.3345 0.5965 0.7276 0.6556 0.9089
0.1226 10.0 720 0.3302 0.6010 0.7258 0.6575 0.9106

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train gyr66/chinese-roberta-wwm-ext-large-lora-ner