gyr66 commited on
Commit
9d72d21
·
1 Parent(s): ff161f6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - gyr66/privacy_detection
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: chinese-roberta-wwm-ext-large-lora-ner
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # chinese-roberta-wwm-ext-large-lora-ner
23
+
24
+ This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the gyr66/privacy_detection dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.3302
27
+ - Precision: 0.6010
28
+ - Recall: 0.7258
29
+ - F1: 0.6575
30
+ - Accuracy: 0.9106
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.001
50
+ - train_batch_size: 28
51
+ - eval_batch_size: 56
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.729 | 1.0 | 72 | 0.3562 | 0.4495 | 0.5818 | 0.5072 | 0.8865 |
62
+ | 0.3155 | 2.0 | 144 | 0.3243 | 0.5155 | 0.6636 | 0.5803 | 0.8972 |
63
+ | 0.2561 | 3.0 | 216 | 0.3021 | 0.5599 | 0.7004 | 0.6223 | 0.9067 |
64
+ | 0.2283 | 4.0 | 288 | 0.3049 | 0.5670 | 0.6984 | 0.6259 | 0.9044 |
65
+ | 0.1952 | 5.0 | 360 | 0.3144 | 0.5836 | 0.7145 | 0.6424 | 0.9076 |
66
+ | 0.174 | 6.0 | 432 | 0.3157 | 0.5787 | 0.7183 | 0.6410 | 0.9063 |
67
+ | 0.155 | 7.0 | 504 | 0.3223 | 0.5966 | 0.7246 | 0.6544 | 0.9083 |
68
+ | 0.1436 | 8.0 | 576 | 0.3267 | 0.5921 | 0.7210 | 0.6502 | 0.9088 |
69
+ | 0.1298 | 9.0 | 648 | 0.3345 | 0.5965 | 0.7276 | 0.6556 | 0.9089 |
70
+ | 0.1226 | 10.0 | 720 | 0.3302 | 0.6010 | 0.7258 | 0.6575 | 0.9106 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.27.3
76
+ - Pytorch 2.0.1+cu117
77
+ - Datasets 2.14.5
78
+ - Tokenizers 0.13.2