TCD-SD21-base-LoRA / README.md
h1t's picture
initial commit
179eb90 verified
|
raw
history blame
2.14 kB
metadata
tags:
  - text-to-image
  - stable-diffusion
  - lora
  - diffusers
  - template:sd-lora
widget:
  - text: >-
      Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic,
      high-detail, epic composition, watercolor.
    output:
      url: images/sd21_base.png
base_model: stabilityai/stable-diffusion-2-1-base
instance_prompt: null
license: mit

TCD-SD21-LoRA

Model description

Official SD21(base) Model of the paper Trajectory Consistency Distillation.

For more usage please found at Project Page

Here is a simple example:

```python import torch from diffusers import StableDiffusionPipeline, TCDScheduler

device = "cuda" base_model_id = "stabilityai/stable-diffusion-2-1-base" tcd_lora_id = "h1t/TCD-SD21-base-LoRA"

pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora()

prompt = "Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic, high-detail, epic composition, watercolor."

image = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=0, # Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step. # A value of 0.3 often yields good results. # We recommend using a higher eta when increasing the number of inference steps. eta=0.3, generator=torch.Generator(device=device).manual_seed(0), ).images[0]

``` sd21_base.png

Download model

Weights for this model are available in Safetensors format.

Download them in the Files & versions tab.