File size: 5,056 Bytes
152436a
0d666dd
 
152436a
 
 
 
 
0d666dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152436a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d666dd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
language:
- en
license: apache-2.0
datasets:
- databricks/databricks-dolly-15k
pipeline_tag: text-generation
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
model-index:
- name: TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 30.55
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 53.7
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 35.85
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 58.09
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
      name: Open LLM Leaderboard
---

TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using dolly dataset. 

Training took 1 hour on an 'ml.g5.xlarge' instance.


```python
hyperparameters ={
  'num_train_epochs': 3,                            # number of training epochs
  'per_device_train_batch_size': 6,                 # batch size for training
  'gradient_accumulation_steps': 2,                 # Number of updates steps to accumulate
  'gradient_checkpointing': True,                   # save memory but slower backward pass
  'bf16': True,                                     # use bfloat16 precision
  'tf32': True,                                     # use tf32 precision
  'learning_rate': 2e-4,                            # learning rate
  'max_grad_norm': 0.3,                             # Maximum norm (for gradient clipping)
  'warmup_ratio': 0.03,                             # warmup ratio
  "lr_scheduler_type":"constant",                   # learning rate scheduler
  'save_strategy': "epoch",                         # save strategy for checkpoints
  "logging_steps": 10,                              # log every x steps
  'merge_adapters': True,                           # wether to merge LoRA into the model (needs more memory)
  'use_flash_attn': True,                           # Whether to use Flash Attention
}

```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |34.04|
|AI2 Reasoning Challenge (25-Shot)|30.55|
|HellaSwag (10-Shot)              |53.70|
|MMLU (5-Shot)                    |26.07|
|TruthfulQA (0-shot)              |35.85|
|Winogrande (5-shot)              |58.09|
|GSM8k (5-shot)                   | 0.00|