persain-flair-upos / training.log
hamedkhaledi's picture
Update Model for 150 epochs
3364279
2022-03-30 07:52:04,950 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:04,958 Model: "SequenceTagger(
(embeddings): StackedEmbeddings(
(list_embedding_0): WordEmbeddings('fa')
(list_embedding_1): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.1, inplace=False)
(encoder): Embedding(5105, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
)
)
(list_embedding_2): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.1, inplace=False)
(encoder): Embedding(5105, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=5105, bias=True)
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=17, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2022-03-30 07:52:04,960 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:04,967 Corpus: "Corpus: 4798 train + 599 dev + 600 test sentences"
2022-03-30 07:52:04,970 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:04,973 Parameters:
2022-03-30 07:52:04,977 - learning_rate: "0.00625"
2022-03-30 07:52:04,986 - mini_batch_size: "16"
2022-03-30 07:52:04,993 - patience: "3"
2022-03-30 07:52:04,995 - anneal_factor: "0.5"
2022-03-30 07:52:04,999 - max_epochs: "200"
2022-03-30 07:52:05,001 - shuffle: "True"
2022-03-30 07:52:05,004 - train_with_dev: "False"
2022-03-30 07:52:05,016 - batch_growth_annealing: "False"
2022-03-30 07:52:05,019 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:05,021 Model training base path: "/content/drive/MyDrive/project/data/upos/model"
2022-03-30 07:52:05,023 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:05,027 Device: cpu
2022-03-30 07:52:05,029 ----------------------------------------------------------------------------------------------------
2022-03-30 07:52:05,030 Embeddings storage mode: gpu
2022-03-30 07:52:05,718 ----------------------------------------------------------------------------------------------------
2022-03-30 08:00:20,625 epoch 130 - iter 30/300 - loss 0.03267748 - samples/sec: 0.97 - lr: 0.006250
2022-03-30 08:08:05,510 epoch 130 - iter 60/300 - loss 0.03183758 - samples/sec: 1.03 - lr: 0.006250
2022-03-30 08:16:39,338 epoch 130 - iter 90/300 - loss 0.03310138 - samples/sec: 0.94 - lr: 0.006250
2022-03-30 08:24:54,316 epoch 130 - iter 120/300 - loss 0.03337116 - samples/sec: 0.97 - lr: 0.006250
2022-03-30 08:32:46,929 epoch 130 - iter 150/300 - loss 0.03255506 - samples/sec: 1.02 - lr: 0.006250
2022-03-30 08:41:23,256 epoch 130 - iter 180/300 - loss 0.03223376 - samples/sec: 0.93 - lr: 0.006250
2022-03-30 08:49:42,419 epoch 130 - iter 210/300 - loss 0.03220594 - samples/sec: 0.96 - lr: 0.006250
2022-03-30 08:57:44,963 epoch 130 - iter 240/300 - loss 0.03212158 - samples/sec: 1.00 - lr: 0.006250
2022-03-30 09:05:42,177 epoch 130 - iter 270/300 - loss 0.03242742 - samples/sec: 1.01 - lr: 0.006250
2022-03-30 09:13:37,521 epoch 130 - iter 300/300 - loss 0.03227379 - samples/sec: 1.01 - lr: 0.006250
2022-03-30 09:13:38,432 ----------------------------------------------------------------------------------------------------
2022-03-30 09:13:38,441 EPOCH 130 done: loss 0.0323 - lr 0.0062500
2022-03-30 09:22:28,190 DEV : loss 0.10123619437217712 - f1-score (micro avg) 0.9805
2022-03-30 09:22:28,203 BAD EPOCHS (no improvement): 0
2022-03-30 09:22:30,400 saving best model
2022-03-30 09:22:32,790 ----------------------------------------------------------------------------------------------------
2022-03-30 09:23:33,426 epoch 131 - iter 30/300 - loss 0.03217341 - samples/sec: 7.92 - lr: 0.006250
2022-03-30 09:24:34,156 epoch 131 - iter 60/300 - loss 0.03280988 - samples/sec: 8.05 - lr: 0.006250
2022-03-30 09:25:36,132 epoch 131 - iter 90/300 - loss 0.03307191 - samples/sec: 7.90 - lr: 0.006250
2022-03-30 09:26:37,730 epoch 131 - iter 120/300 - loss 0.03208308 - samples/sec: 7.92 - lr: 0.006250
2022-03-30 09:27:42,746 epoch 131 - iter 150/300 - loss 0.03185314 - samples/sec: 7.50 - lr: 0.006250
2022-03-30 09:28:51,373 epoch 131 - iter 180/300 - loss 0.03166563 - samples/sec: 7.12 - lr: 0.006250
2022-03-30 09:29:55,576 epoch 131 - iter 210/300 - loss 0.03182935 - samples/sec: 7.62 - lr: 0.006250
2022-03-30 09:31:03,605 epoch 131 - iter 240/300 - loss 0.03156167 - samples/sec: 7.18 - lr: 0.006250
2022-03-30 09:32:15,124 epoch 131 - iter 270/300 - loss 0.03182382 - samples/sec: 6.84 - lr: 0.006250
2022-03-30 09:33:17,573 epoch 131 - iter 300/300 - loss 0.03189648 - samples/sec: 7.84 - lr: 0.006250
2022-03-30 09:33:18,844 ----------------------------------------------------------------------------------------------------
2022-03-30 09:33:18,855 EPOCH 131 done: loss 0.0319 - lr 0.0062500
2022-03-30 09:33:55,554 DEV : loss 0.10127950459718704 - f1-score (micro avg) 0.9806
2022-03-30 09:33:55,573 BAD EPOCHS (no improvement): 0
2022-03-30 09:33:57,817 saving best model
2022-03-30 09:34:00,204 ----------------------------------------------------------------------------------------------------
2022-03-30 09:35:12,825 epoch 132 - iter 30/300 - loss 0.03402971 - samples/sec: 6.61 - lr: 0.006250
2022-03-30 09:36:22,700 epoch 132 - iter 60/300 - loss 0.03264956 - samples/sec: 7.02 - lr: 0.006250
2022-03-30 09:37:32,308 epoch 132 - iter 90/300 - loss 0.03345275 - samples/sec: 7.05 - lr: 0.006250
2022-03-30 09:38:38,115 epoch 132 - iter 120/300 - loss 0.03354812 - samples/sec: 7.46 - lr: 0.006250
2022-03-30 09:39:44,471 epoch 132 - iter 150/300 - loss 0.03282504 - samples/sec: 7.36 - lr: 0.006250
2022-03-30 09:40:49,418 epoch 132 - iter 180/300 - loss 0.03263641 - samples/sec: 7.53 - lr: 0.006250
2022-03-30 09:41:55,844 epoch 132 - iter 210/300 - loss 0.03231144 - samples/sec: 7.37 - lr: 0.006250
2022-03-30 09:42:55,650 epoch 132 - iter 240/300 - loss 0.03227446 - samples/sec: 8.18 - lr: 0.006250
2022-03-30 09:43:58,522 epoch 132 - iter 270/300 - loss 0.03245053 - samples/sec: 7.81 - lr: 0.006250
2022-03-30 09:45:03,752 epoch 132 - iter 300/300 - loss 0.03224173 - samples/sec: 7.49 - lr: 0.006250
2022-03-30 09:45:05,008 ----------------------------------------------------------------------------------------------------
2022-03-30 09:45:05,017 EPOCH 132 done: loss 0.0322 - lr 0.0062500
2022-03-30 09:45:42,784 DEV : loss 0.10122731328010559 - f1-score (micro avg) 0.9802
2022-03-30 09:45:42,797 BAD EPOCHS (no improvement): 1
2022-03-30 09:45:44,948 ----------------------------------------------------------------------------------------------------
2022-03-30 09:46:55,002 epoch 133 - iter 30/300 - loss 0.03269861 - samples/sec: 6.85 - lr: 0.006250
2022-03-30 09:47:56,852 epoch 133 - iter 60/300 - loss 0.03223739 - samples/sec: 7.96 - lr: 0.006250
2022-03-30 09:48:58,825 epoch 133 - iter 90/300 - loss 0.03190079 - samples/sec: 7.90 - lr: 0.006250
2022-03-30 09:50:06,466 epoch 133 - iter 120/300 - loss 0.03202131 - samples/sec: 7.22 - lr: 0.006250
2022-03-30 09:51:13,277 epoch 133 - iter 150/300 - loss 0.03154350 - samples/sec: 7.38 - lr: 0.006250
2022-03-30 09:52:18,131 epoch 133 - iter 180/300 - loss 0.03188183 - samples/sec: 7.56 - lr: 0.006250
2022-03-30 09:53:23,838 epoch 133 - iter 210/300 - loss 0.03109959 - samples/sec: 7.44 - lr: 0.006250
2022-03-30 09:54:30,950 epoch 133 - iter 240/300 - loss 0.03185256 - samples/sec: 7.28 - lr: 0.006250
2022-03-30 09:55:36,895 epoch 133 - iter 270/300 - loss 0.03213568 - samples/sec: 7.44 - lr: 0.006250
2022-03-30 09:56:44,302 epoch 133 - iter 300/300 - loss 0.03195716 - samples/sec: 7.26 - lr: 0.006250
2022-03-30 09:56:45,573 ----------------------------------------------------------------------------------------------------
2022-03-30 09:56:45,584 EPOCH 133 done: loss 0.0320 - lr 0.0062500
2022-03-30 09:57:21,079 DEV : loss 0.10153035819530487 - f1-score (micro avg) 0.9801
2022-03-30 09:57:21,095 BAD EPOCHS (no improvement): 2
2022-03-30 09:57:23,256 ----------------------------------------------------------------------------------------------------
2022-03-30 09:58:25,099 epoch 134 - iter 30/300 - loss 0.03314154 - samples/sec: 7.76 - lr: 0.006250
2022-03-30 09:59:30,588 epoch 134 - iter 60/300 - loss 0.03131403 - samples/sec: 7.47 - lr: 0.006250
2022-03-30 10:00:32,373 epoch 134 - iter 90/300 - loss 0.03143065 - samples/sec: 7.92 - lr: 0.006250
2022-03-30 10:01:36,218 epoch 134 - iter 120/300 - loss 0.03178706 - samples/sec: 7.69 - lr: 0.006250
2022-03-30 10:02:44,074 epoch 134 - iter 150/300 - loss 0.03166911 - samples/sec: 7.23 - lr: 0.006250
2022-03-30 10:03:53,060 epoch 134 - iter 180/300 - loss 0.03108413 - samples/sec: 7.10 - lr: 0.006250
2022-03-30 10:04:57,710 epoch 134 - iter 210/300 - loss 0.03049568 - samples/sec: 7.56 - lr: 0.006250
2022-03-30 10:05:58,539 epoch 134 - iter 240/300 - loss 0.03053009 - samples/sec: 8.13 - lr: 0.006250
2022-03-30 10:06:59,522 epoch 134 - iter 270/300 - loss 0.03073424 - samples/sec: 8.01 - lr: 0.006250
2022-03-30 10:08:03,948 epoch 134 - iter 300/300 - loss 0.03153425 - samples/sec: 7.65 - lr: 0.006250
2022-03-30 10:08:05,164 ----------------------------------------------------------------------------------------------------
2022-03-30 10:08:05,172 EPOCH 134 done: loss 0.0315 - lr 0.0062500
2022-03-30 10:08:40,529 DEV : loss 0.10191945731639862 - f1-score (micro avg) 0.9799
2022-03-30 10:08:40,545 BAD EPOCHS (no improvement): 3
2022-03-30 10:08:42,752 ----------------------------------------------------------------------------------------------------
2022-03-30 10:09:49,186 epoch 135 - iter 30/300 - loss 0.02855664 - samples/sec: 7.23 - lr: 0.006250
2022-03-30 10:10:49,961 epoch 135 - iter 60/300 - loss 0.02798751 - samples/sec: 8.03 - lr: 0.006250
2022-03-30 10:11:48,628 epoch 135 - iter 90/300 - loss 0.02862530 - samples/sec: 8.36 - lr: 0.006250
2022-03-30 10:12:46,050 epoch 135 - iter 120/300 - loss 0.02734978 - samples/sec: 8.50 - lr: 0.006250
2022-03-30 10:13:48,289 epoch 135 - iter 150/300 - loss 0.02787561 - samples/sec: 7.83 - lr: 0.006250
2022-03-30 10:14:48,840 epoch 135 - iter 180/300 - loss 0.02805375 - samples/sec: 8.05 - lr: 0.006250
2022-03-30 10:15:53,142 epoch 135 - iter 210/300 - loss 0.02819357 - samples/sec: 7.57 - lr: 0.006250
2022-03-30 10:16:55,614 epoch 135 - iter 240/300 - loss 0.02857102 - samples/sec: 7.81 - lr: 0.006250
2022-03-30 10:17:57,771 epoch 135 - iter 270/300 - loss 0.02854189 - samples/sec: 7.90 - lr: 0.006250
2022-03-30 10:18:56,900 epoch 135 - iter 300/300 - loss 0.02924464 - samples/sec: 8.32 - lr: 0.006250
2022-03-30 10:18:58,001 ----------------------------------------------------------------------------------------------------
2022-03-30 10:18:58,011 EPOCH 135 done: loss 0.0292 - lr 0.0062500
2022-03-30 10:19:37,487 DEV : loss 0.10203799605369568 - f1-score (micro avg) 0.9799
2022-03-30 10:19:37,508 BAD EPOCHS (no improvement): 4
2022-03-30 10:19:40,464 ----------------------------------------------------------------------------------------------------
2022-03-30 10:20:42,433 epoch 136 - iter 30/300 - loss 0.02678492 - samples/sec: 7.75 - lr: 0.003125
2022-03-30 10:21:45,796 epoch 136 - iter 60/300 - loss 0.02964621 - samples/sec: 7.75 - lr: 0.003125
2022-03-30 10:22:53,636 epoch 136 - iter 90/300 - loss 0.02966682 - samples/sec: 7.32 - lr: 0.003125
2022-03-30 10:23:51,242 epoch 136 - iter 120/300 - loss 0.02938922 - samples/sec: 8.49 - lr: 0.003125
2022-03-30 10:24:52,074 epoch 136 - iter 150/300 - loss 0.02991657 - samples/sec: 8.06 - lr: 0.003125
2022-03-30 10:25:55,338 epoch 136 - iter 180/300 - loss 0.03012840 - samples/sec: 7.71 - lr: 0.003125
2022-03-30 10:26:58,329 epoch 136 - iter 210/300 - loss 0.03004874 - samples/sec: 7.74 - lr: 0.003125
2022-03-30 10:27:57,399 epoch 136 - iter 240/300 - loss 0.03035409 - samples/sec: 8.26 - lr: 0.003125
2022-03-30 10:28:56,834 epoch 136 - iter 270/300 - loss 0.03021945 - samples/sec: 8.20 - lr: 0.003125
2022-03-30 10:29:56,059 epoch 136 - iter 300/300 - loss 0.02976912 - samples/sec: 8.25 - lr: 0.003125
2022-03-30 10:29:56,997 ----------------------------------------------------------------------------------------------------
2022-03-30 10:29:57,005 EPOCH 136 done: loss 0.0298 - lr 0.0031250
2022-03-30 10:30:32,284 DEV : loss 0.10185939818620682 - f1-score (micro avg) 0.9799
2022-03-30 10:30:32,301 BAD EPOCHS (no improvement): 1
2022-03-30 10:30:34,702 ----------------------------------------------------------------------------------------------------
2022-03-30 10:31:34,245 epoch 137 - iter 30/300 - loss 0.03121086 - samples/sec: 8.06 - lr: 0.003125
2022-03-30 10:32:42,985 epoch 137 - iter 60/300 - loss 0.02851138 - samples/sec: 7.12 - lr: 0.003125
2022-03-30 10:33:46,476 epoch 137 - iter 90/300 - loss 0.02891198 - samples/sec: 7.71 - lr: 0.003125
2022-03-30 10:34:53,147 epoch 137 - iter 120/300 - loss 0.02967460 - samples/sec: 7.33 - lr: 0.003125
2022-03-30 10:35:53,437 epoch 137 - iter 150/300 - loss 0.02960777 - samples/sec: 8.11 - lr: 0.003125
2022-03-30 10:36:53,995 epoch 137 - iter 180/300 - loss 0.03064080 - samples/sec: 8.06 - lr: 0.003125
2022-03-30 10:38:02,423 epoch 137 - iter 210/300 - loss 0.03087131 - samples/sec: 7.15 - lr: 0.003125
2022-03-30 10:39:13,159 epoch 137 - iter 240/300 - loss 0.03080292 - samples/sec: 6.91 - lr: 0.003125
2022-03-30 10:40:17,139 epoch 137 - iter 270/300 - loss 0.03084099 - samples/sec: 7.66 - lr: 0.003125
2022-03-30 10:41:20,762 epoch 137 - iter 300/300 - loss 0.03082571 - samples/sec: 7.69 - lr: 0.003125
2022-03-30 10:41:22,012 ----------------------------------------------------------------------------------------------------
2022-03-30 10:41:22,022 EPOCH 137 done: loss 0.0308 - lr 0.0031250
2022-03-30 10:41:57,389 DEV : loss 0.10173739492893219 - f1-score (micro avg) 0.9797
2022-03-30 10:41:57,403 BAD EPOCHS (no improvement): 2
2022-03-30 10:41:59,737 ----------------------------------------------------------------------------------------------------
2022-03-30 10:43:02,290 epoch 138 - iter 30/300 - loss 0.02868595 - samples/sec: 7.67 - lr: 0.003125
2022-03-30 10:44:10,101 epoch 138 - iter 60/300 - loss 0.03005261 - samples/sec: 7.23 - lr: 0.003125
2022-03-30 10:45:18,374 epoch 138 - iter 90/300 - loss 0.03051957 - samples/sec: 7.17 - lr: 0.003125
2022-03-30 10:46:16,512 epoch 138 - iter 120/300 - loss 0.03062131 - samples/sec: 8.39 - lr: 0.003125
2022-03-30 10:47:20,487 epoch 138 - iter 150/300 - loss 0.03084338 - samples/sec: 7.63 - lr: 0.003125
2022-03-30 10:48:18,416 epoch 138 - iter 180/300 - loss 0.03006383 - samples/sec: 8.46 - lr: 0.003125
2022-03-30 10:49:21,648 epoch 138 - iter 210/300 - loss 0.03021354 - samples/sec: 7.71 - lr: 0.003125
2022-03-30 10:50:20,510 epoch 138 - iter 240/300 - loss 0.02932483 - samples/sec: 8.30 - lr: 0.003125
2022-03-30 10:51:20,095 epoch 138 - iter 270/300 - loss 0.02939289 - samples/sec: 8.19 - lr: 0.003125
2022-03-30 10:52:17,869 epoch 138 - iter 300/300 - loss 0.02959066 - samples/sec: 8.56 - lr: 0.003125
2022-03-30 10:52:18,790 ----------------------------------------------------------------------------------------------------
2022-03-30 10:52:18,798 EPOCH 138 done: loss 0.0296 - lr 0.0031250
2022-03-30 10:52:54,449 DEV : loss 0.10195963829755783 - f1-score (micro avg) 0.9799
2022-03-30 10:52:54,462 BAD EPOCHS (no improvement): 3
2022-03-30 10:52:56,763 ----------------------------------------------------------------------------------------------------
2022-03-30 10:53:56,820 epoch 139 - iter 30/300 - loss 0.02870452 - samples/sec: 8.00 - lr: 0.003125
2022-03-30 10:54:55,650 epoch 139 - iter 60/300 - loss 0.02865684 - samples/sec: 8.29 - lr: 0.003125
2022-03-30 10:55:57,327 epoch 139 - iter 90/300 - loss 0.03033846 - samples/sec: 7.92 - lr: 0.003125
2022-03-30 10:57:00,485 epoch 139 - iter 120/300 - loss 0.03033128 - samples/sec: 7.72 - lr: 0.003125
2022-03-30 10:58:00,955 epoch 139 - iter 150/300 - loss 0.03097701 - samples/sec: 8.09 - lr: 0.003125
2022-03-30 10:58:57,771 epoch 139 - iter 180/300 - loss 0.03067534 - samples/sec: 8.62 - lr: 0.003125
2022-03-30 10:59:56,571 epoch 139 - iter 210/300 - loss 0.03043512 - samples/sec: 8.30 - lr: 0.003125
2022-03-30 11:00:56,944 epoch 139 - iter 240/300 - loss 0.03097712 - samples/sec: 8.08 - lr: 0.003125
2022-03-30 11:01:54,372 epoch 139 - iter 270/300 - loss 0.03147405 - samples/sec: 8.53 - lr: 0.003125
2022-03-30 11:03:02,721 epoch 139 - iter 300/300 - loss 0.03130255 - samples/sec: 7.17 - lr: 0.003125
2022-03-30 11:03:04,039 ----------------------------------------------------------------------------------------------------
2022-03-30 11:03:04,047 EPOCH 139 done: loss 0.0313 - lr 0.0031250
2022-03-30 11:03:40,583 DEV : loss 0.10206855833530426 - f1-score (micro avg) 0.98
2022-03-30 11:03:40,600 BAD EPOCHS (no improvement): 4
2022-03-30 11:03:42,934 ----------------------------------------------------------------------------------------------------
2022-03-30 11:04:43,474 epoch 140 - iter 30/300 - loss 0.02956418 - samples/sec: 7.93 - lr: 0.001563
2022-03-30 11:05:46,895 epoch 140 - iter 60/300 - loss 0.03269747 - samples/sec: 7.70 - lr: 0.001563
2022-03-30 11:06:54,734 epoch 140 - iter 90/300 - loss 0.03185046 - samples/sec: 7.18 - lr: 0.001563
2022-03-30 11:07:59,429 epoch 140 - iter 120/300 - loss 0.03156745 - samples/sec: 7.54 - lr: 0.001563
2022-03-30 11:09:03,178 epoch 140 - iter 150/300 - loss 0.03111944 - samples/sec: 7.67 - lr: 0.001563
2022-03-30 11:10:03,574 epoch 140 - iter 180/300 - loss 0.03137674 - samples/sec: 8.08 - lr: 0.001563
2022-03-30 11:11:08,571 epoch 140 - iter 210/300 - loss 0.03057508 - samples/sec: 7.50 - lr: 0.001563
2022-03-30 11:12:07,984 epoch 140 - iter 240/300 - loss 0.03026252 - samples/sec: 8.21 - lr: 0.001563
2022-03-30 11:13:10,011 epoch 140 - iter 270/300 - loss 0.03010044 - samples/sec: 7.86 - lr: 0.001563
2022-03-30 11:14:13,319 epoch 140 - iter 300/300 - loss 0.02984354 - samples/sec: 7.87 - lr: 0.001563
2022-03-30 11:14:15,239 ----------------------------------------------------------------------------------------------------
2022-03-30 11:14:15,254 EPOCH 140 done: loss 0.0298 - lr 0.0015625
2022-03-30 11:14:53,914 DEV : loss 0.10188718885183334 - f1-score (micro avg) 0.9799
2022-03-30 11:14:53,932 BAD EPOCHS (no improvement): 1
2022-03-30 11:14:56,051 ----------------------------------------------------------------------------------------------------
2022-03-30 11:15:56,071 epoch 141 - iter 30/300 - loss 0.03055940 - samples/sec: 8.00 - lr: 0.001563
2022-03-30 11:17:03,620 epoch 141 - iter 60/300 - loss 0.03027722 - samples/sec: 7.22 - lr: 0.001563
2022-03-30 11:18:05,512 epoch 141 - iter 90/300 - loss 0.02871502 - samples/sec: 7.90 - lr: 0.001563
2022-03-30 11:19:09,247 epoch 141 - iter 120/300 - loss 0.02972079 - samples/sec: 7.67 - lr: 0.001563
2022-03-30 11:20:06,221 epoch 141 - iter 150/300 - loss 0.02927190 - samples/sec: 8.59 - lr: 0.001563
2022-03-30 11:21:09,274 epoch 141 - iter 180/300 - loss 0.02953372 - samples/sec: 7.73 - lr: 0.001563
2022-03-30 11:22:12,010 epoch 141 - iter 210/300 - loss 0.02986717 - samples/sec: 7.78 - lr: 0.001563
2022-03-30 11:23:27,048 epoch 141 - iter 240/300 - loss 0.02962978 - samples/sec: 6.50 - lr: 0.001563
2022-03-30 11:24:31,510 epoch 141 - iter 270/300 - loss 0.02956472 - samples/sec: 7.58 - lr: 0.001563
2022-03-30 11:25:38,381 epoch 141 - iter 300/300 - loss 0.02905854 - samples/sec: 7.34 - lr: 0.001563
2022-03-30 11:25:39,523 ----------------------------------------------------------------------------------------------------
2022-03-30 11:25:39,534 EPOCH 141 done: loss 0.0291 - lr 0.0015625
2022-03-30 11:26:18,182 DEV : loss 0.10185949504375458 - f1-score (micro avg) 0.98
2022-03-30 11:26:18,196 BAD EPOCHS (no improvement): 2
2022-03-30 11:26:20,410 ----------------------------------------------------------------------------------------------------
2022-03-30 11:27:21,964 epoch 142 - iter 30/300 - loss 0.03034100 - samples/sec: 7.80 - lr: 0.001563
2022-03-30 11:28:33,021 epoch 142 - iter 60/300 - loss 0.02986344 - samples/sec: 6.90 - lr: 0.001563
2022-03-30 11:29:40,667 epoch 142 - iter 90/300 - loss 0.03023673 - samples/sec: 7.24 - lr: 0.001563
2022-03-30 11:30:46,660 epoch 142 - iter 120/300 - loss 0.03055494 - samples/sec: 7.43 - lr: 0.001563
2022-03-30 11:31:57,441 epoch 142 - iter 150/300 - loss 0.03014855 - samples/sec: 6.89 - lr: 0.001563
2022-03-30 11:33:04,374 epoch 142 - iter 180/300 - loss 0.02997817 - samples/sec: 7.29 - lr: 0.001563
2022-03-30 11:34:11,717 epoch 142 - iter 210/300 - loss 0.02960975 - samples/sec: 7.28 - lr: 0.001563
2022-03-30 11:35:18,891 epoch 142 - iter 240/300 - loss 0.02960418 - samples/sec: 7.30 - lr: 0.001563
2022-03-30 11:36:26,640 epoch 142 - iter 270/300 - loss 0.02951040 - samples/sec: 7.20 - lr: 0.001563
2022-03-30 11:37:30,673 epoch 142 - iter 300/300 - loss 0.02959805 - samples/sec: 7.66 - lr: 0.001563
2022-03-30 11:37:32,055 ----------------------------------------------------------------------------------------------------
2022-03-30 11:37:32,065 EPOCH 142 done: loss 0.0296 - lr 0.0015625
2022-03-30 11:38:10,602 DEV : loss 0.1019764393568039 - f1-score (micro avg) 0.98
2022-03-30 11:38:10,618 BAD EPOCHS (no improvement): 3
2022-03-30 11:38:12,899 ----------------------------------------------------------------------------------------------------
2022-03-30 11:39:18,069 epoch 143 - iter 30/300 - loss 0.03082201 - samples/sec: 7.37 - lr: 0.001563
2022-03-30 11:40:24,720 epoch 143 - iter 60/300 - loss 0.03049819 - samples/sec: 7.32 - lr: 0.001563
2022-03-30 11:41:28,402 epoch 143 - iter 90/300 - loss 0.03046947 - samples/sec: 7.69 - lr: 0.001563
2022-03-30 11:42:34,764 epoch 143 - iter 120/300 - loss 0.03107469 - samples/sec: 7.36 - lr: 0.001563
2022-03-30 11:43:33,723 epoch 143 - iter 150/300 - loss 0.03117679 - samples/sec: 8.30 - lr: 0.001563
2022-03-30 11:44:38,979 epoch 143 - iter 180/300 - loss 0.03124911 - samples/sec: 7.50 - lr: 0.001563
2022-03-30 11:45:38,207 epoch 143 - iter 210/300 - loss 0.03069054 - samples/sec: 8.26 - lr: 0.001563
2022-03-30 11:46:38,216 epoch 143 - iter 240/300 - loss 0.03057702 - samples/sec: 8.13 - lr: 0.001563
2022-03-30 11:47:42,725 epoch 143 - iter 270/300 - loss 0.03075338 - samples/sec: 7.55 - lr: 0.001563
2022-03-30 11:48:51,739 epoch 143 - iter 300/300 - loss 0.03080276 - samples/sec: 7.09 - lr: 0.001563
2022-03-30 11:48:52,851 ----------------------------------------------------------------------------------------------------
2022-03-30 11:48:52,859 EPOCH 143 done: loss 0.0308 - lr 0.0015625
2022-03-30 11:49:28,228 DEV : loss 0.10188134014606476 - f1-score (micro avg) 0.9799
2022-03-30 11:49:28,244 BAD EPOCHS (no improvement): 4
2022-03-30 11:49:30,299 ----------------------------------------------------------------------------------------------------
2022-03-30 11:50:34,600 epoch 144 - iter 30/300 - loss 0.03093159 - samples/sec: 7.47 - lr: 0.000781
2022-03-30 11:51:31,933 epoch 144 - iter 60/300 - loss 0.03006009 - samples/sec: 8.62 - lr: 0.000781
2022-03-30 11:52:36,364 epoch 144 - iter 90/300 - loss 0.03038329 - samples/sec: 7.62 - lr: 0.000781
2022-03-30 11:53:39,169 epoch 144 - iter 120/300 - loss 0.03019530 - samples/sec: 7.79 - lr: 0.000781
2022-03-30 11:54:43,057 epoch 144 - iter 150/300 - loss 0.03019717 - samples/sec: 7.63 - lr: 0.000781
2022-03-30 11:55:44,578 epoch 144 - iter 180/300 - loss 0.02965347 - samples/sec: 7.95 - lr: 0.000781
2022-03-30 11:56:45,040 epoch 144 - iter 210/300 - loss 0.02932736 - samples/sec: 8.10 - lr: 0.000781
2022-03-30 11:57:47,657 epoch 144 - iter 240/300 - loss 0.02934119 - samples/sec: 7.79 - lr: 0.000781
2022-03-30 11:58:51,712 epoch 144 - iter 270/300 - loss 0.02864624 - samples/sec: 7.62 - lr: 0.000781
2022-03-30 11:59:54,247 epoch 144 - iter 300/300 - loss 0.02886004 - samples/sec: 7.84 - lr: 0.000781
2022-03-30 11:59:55,421 ----------------------------------------------------------------------------------------------------
2022-03-30 11:59:55,428 EPOCH 144 done: loss 0.0289 - lr 0.0007813
2022-03-30 12:00:31,510 DEV : loss 0.10193286091089249 - f1-score (micro avg) 0.9799
2022-03-30 12:00:31,529 BAD EPOCHS (no improvement): 1
2022-03-30 12:00:33,530 ----------------------------------------------------------------------------------------------------
2022-03-30 12:01:34,070 epoch 145 - iter 30/300 - loss 0.03054470 - samples/sec: 7.93 - lr: 0.000781
2022-03-30 12:02:37,077 epoch 145 - iter 60/300 - loss 0.02925298 - samples/sec: 7.75 - lr: 0.000781
2022-03-30 12:03:38,400 epoch 145 - iter 90/300 - loss 0.03073912 - samples/sec: 7.95 - lr: 0.000781
2022-03-30 12:04:39,348 epoch 145 - iter 120/300 - loss 0.03068456 - samples/sec: 8.00 - lr: 0.000781
2022-03-30 12:05:39,921 epoch 145 - iter 150/300 - loss 0.03031453 - samples/sec: 8.05 - lr: 0.000781
2022-03-30 12:06:41,034 epoch 145 - iter 180/300 - loss 0.02958307 - samples/sec: 7.98 - lr: 0.000781
2022-03-30 12:07:43,244 epoch 145 - iter 210/300 - loss 0.02954896 - samples/sec: 7.84 - lr: 0.000781
2022-03-30 12:08:42,598 epoch 145 - iter 240/300 - loss 0.03014911 - samples/sec: 8.22 - lr: 0.000781
2022-03-30 12:09:41,007 epoch 145 - iter 270/300 - loss 0.03031660 - samples/sec: 8.37 - lr: 0.000781
2022-03-30 12:10:40,278 epoch 145 - iter 300/300 - loss 0.03040646 - samples/sec: 8.25 - lr: 0.000781
2022-03-30 12:10:41,359 ----------------------------------------------------------------------------------------------------
2022-03-30 12:10:41,369 EPOCH 145 done: loss 0.0304 - lr 0.0007813
2022-03-30 12:11:16,524 DEV : loss 0.1020410880446434 - f1-score (micro avg) 0.9799
2022-03-30 12:11:16,537 BAD EPOCHS (no improvement): 2
2022-03-30 12:11:18,468 ----------------------------------------------------------------------------------------------------
2022-03-30 12:12:17,736 epoch 146 - iter 30/300 - loss 0.03388915 - samples/sec: 8.10 - lr: 0.000781
2022-03-30 12:13:16,442 epoch 146 - iter 60/300 - loss 0.03019310 - samples/sec: 8.31 - lr: 0.000781
2022-03-30 12:14:24,567 epoch 146 - iter 90/300 - loss 0.02995728 - samples/sec: 7.15 - lr: 0.000781
2022-03-30 12:15:20,711 epoch 146 - iter 120/300 - loss 0.03055739 - samples/sec: 8.70 - lr: 0.000781
2022-03-30 12:16:19,853 epoch 146 - iter 150/300 - loss 0.03013465 - samples/sec: 8.26 - lr: 0.000781
2022-03-30 12:17:19,384 epoch 146 - iter 180/300 - loss 0.03001331 - samples/sec: 8.20 - lr: 0.000781
2022-03-30 12:18:22,009 epoch 146 - iter 210/300 - loss 0.03033218 - samples/sec: 7.78 - lr: 0.000781
2022-03-30 12:19:18,662 epoch 146 - iter 240/300 - loss 0.03027508 - samples/sec: 8.62 - lr: 0.000781
2022-03-30 12:20:16,122 epoch 146 - iter 270/300 - loss 0.02978917 - samples/sec: 8.49 - lr: 0.000781
2022-03-30 12:21:17,243 epoch 146 - iter 300/300 - loss 0.02969052 - samples/sec: 7.98 - lr: 0.000781
2022-03-30 12:21:18,187 ----------------------------------------------------------------------------------------------------
2022-03-30 12:21:18,195 EPOCH 146 done: loss 0.0297 - lr 0.0007813
2022-03-30 12:21:52,094 DEV : loss 0.10200724005699158 - f1-score (micro avg) 0.9799
2022-03-30 12:21:52,110 BAD EPOCHS (no improvement): 3
2022-03-30 12:21:54,193 ----------------------------------------------------------------------------------------------------
2022-03-30 12:22:55,160 epoch 147 - iter 30/300 - loss 0.03017420 - samples/sec: 7.87 - lr: 0.000781
2022-03-30 12:23:50,715 epoch 147 - iter 60/300 - loss 0.03011640 - samples/sec: 8.82 - lr: 0.000781
2022-03-30 12:24:46,161 epoch 147 - iter 90/300 - loss 0.02814870 - samples/sec: 8.81 - lr: 0.000781
2022-03-30 12:25:49,615 epoch 147 - iter 120/300 - loss 0.02833966 - samples/sec: 7.68 - lr: 0.000781
2022-03-30 12:26:49,911 epoch 147 - iter 150/300 - loss 0.02799142 - samples/sec: 8.09 - lr: 0.000781
2022-03-30 12:27:51,843 epoch 147 - iter 180/300 - loss 0.02847355 - samples/sec: 7.88 - lr: 0.000781
2022-03-30 12:28:57,284 epoch 147 - iter 210/300 - loss 0.02890269 - samples/sec: 7.45 - lr: 0.000781
2022-03-30 12:29:53,822 epoch 147 - iter 240/300 - loss 0.02913940 - samples/sec: 8.64 - lr: 0.000781
2022-03-30 12:30:51,413 epoch 147 - iter 270/300 - loss 0.02966032 - samples/sec: 8.48 - lr: 0.000781
2022-03-30 12:31:48,559 epoch 147 - iter 300/300 - loss 0.03015249 - samples/sec: 8.57 - lr: 0.000781
2022-03-30 12:31:49,495 ----------------------------------------------------------------------------------------------------
2022-03-30 12:31:49,502 EPOCH 147 done: loss 0.0302 - lr 0.0007813
2022-03-30 12:32:24,767 DEV : loss 0.10197500139474869 - f1-score (micro avg) 0.9799
2022-03-30 12:32:24,780 BAD EPOCHS (no improvement): 4
2022-03-30 12:32:27,012 ----------------------------------------------------------------------------------------------------
2022-03-30 12:33:24,651 epoch 148 - iter 30/300 - loss 0.02956941 - samples/sec: 8.33 - lr: 0.000391
2022-03-30 12:34:22,801 epoch 148 - iter 60/300 - loss 0.02827974 - samples/sec: 8.39 - lr: 0.000391
2022-03-30 12:35:19,846 epoch 148 - iter 90/300 - loss 0.02906290 - samples/sec: 8.56 - lr: 0.000391
2022-03-30 12:36:19,972 epoch 148 - iter 120/300 - loss 0.02973210 - samples/sec: 8.13 - lr: 0.000391
2022-03-30 12:37:20,722 epoch 148 - iter 150/300 - loss 0.03000164 - samples/sec: 8.11 - lr: 0.000391
2022-03-30 12:38:21,387 epoch 148 - iter 180/300 - loss 0.03013482 - samples/sec: 8.06 - lr: 0.000391
2022-03-30 12:39:29,775 epoch 148 - iter 210/300 - loss 0.02972903 - samples/sec: 7.15 - lr: 0.000391
2022-03-30 12:40:30,565 epoch 148 - iter 240/300 - loss 0.02919740 - samples/sec: 8.04 - lr: 0.000391
2022-03-30 12:41:40,602 epoch 148 - iter 270/300 - loss 0.02951950 - samples/sec: 6.97 - lr: 0.000391
2022-03-30 12:42:43,341 epoch 148 - iter 300/300 - loss 0.02951220 - samples/sec: 7.80 - lr: 0.000391
2022-03-30 12:42:44,430 ----------------------------------------------------------------------------------------------------
2022-03-30 12:42:44,439 EPOCH 148 done: loss 0.0295 - lr 0.0003906
2022-03-30 12:43:19,991 DEV : loss 0.1020146831870079 - f1-score (micro avg) 0.9799
2022-03-30 12:43:20,004 BAD EPOCHS (no improvement): 1
2022-03-30 12:43:22,042 ----------------------------------------------------------------------------------------------------
2022-03-30 12:44:17,873 epoch 149 - iter 30/300 - loss 0.03481397 - samples/sec: 8.60 - lr: 0.000391
2022-03-30 12:45:25,311 epoch 149 - iter 60/300 - loss 0.02951263 - samples/sec: 7.22 - lr: 0.000391
2022-03-30 12:46:28,256 epoch 149 - iter 90/300 - loss 0.03115284 - samples/sec: 7.76 - lr: 0.000391
2022-03-30 12:47:26,637 epoch 149 - iter 120/300 - loss 0.03026986 - samples/sec: 8.36 - lr: 0.000391
2022-03-30 12:48:27,732 epoch 149 - iter 150/300 - loss 0.02926616 - samples/sec: 7.99 - lr: 0.000391
2022-03-30 12:49:28,983 epoch 149 - iter 180/300 - loss 0.02904276 - samples/sec: 7.96 - lr: 0.000391
2022-03-30 12:50:37,366 epoch 149 - iter 210/300 - loss 0.02906074 - samples/sec: 7.12 - lr: 0.000391
2022-03-30 12:51:40,166 epoch 149 - iter 240/300 - loss 0.02931871 - samples/sec: 7.76 - lr: 0.000391
2022-03-30 12:52:44,553 epoch 149 - iter 270/300 - loss 0.02949797 - samples/sec: 7.60 - lr: 0.000391
2022-03-30 12:53:43,279 epoch 149 - iter 300/300 - loss 0.02966499 - samples/sec: 8.33 - lr: 0.000391
2022-03-30 12:53:44,358 ----------------------------------------------------------------------------------------------------
2022-03-30 12:53:44,368 EPOCH 149 done: loss 0.0297 - lr 0.0003906
2022-03-30 12:54:20,685 DEV : loss 0.10201691836118698 - f1-score (micro avg) 0.9799
2022-03-30 12:54:20,700 BAD EPOCHS (no improvement): 2
2022-03-30 12:54:22,923 ----------------------------------------------------------------------------------------------------
2022-03-30 12:55:26,769 epoch 150 - iter 30/300 - loss 0.02921641 - samples/sec: 7.52 - lr: 0.000391
2022-03-30 12:56:30,124 epoch 150 - iter 60/300 - loss 0.03017024 - samples/sec: 7.70 - lr: 0.000391
2022-03-30 12:57:37,174 epoch 150 - iter 90/300 - loss 0.02976986 - samples/sec: 7.29 - lr: 0.000391
2022-03-30 12:58:37,123 epoch 150 - iter 120/300 - loss 0.02963135 - samples/sec: 8.13 - lr: 0.000391
2022-03-30 12:59:34,900 epoch 150 - iter 150/300 - loss 0.02946543 - samples/sec: 8.46 - lr: 0.000391
2022-03-30 13:00:38,262 epoch 150 - iter 180/300 - loss 0.02918791 - samples/sec: 7.72 - lr: 0.000391
2022-03-30 13:01:36,418 epoch 150 - iter 210/300 - loss 0.02878193 - samples/sec: 8.39 - lr: 0.000391
2022-03-30 13:02:37,434 epoch 150 - iter 240/300 - loss 0.02897084 - samples/sec: 8.00 - lr: 0.000391
2022-03-30 13:03:38,183 epoch 150 - iter 270/300 - loss 0.02925266 - samples/sec: 8.03 - lr: 0.000391
2022-03-30 13:04:38,412 epoch 150 - iter 300/300 - loss 0.02904189 - samples/sec: 8.09 - lr: 0.000391
2022-03-30 13:04:39,315 ----------------------------------------------------------------------------------------------------
2022-03-30 13:04:39,324 EPOCH 150 done: loss 0.0290 - lr 0.0003906
2022-03-30 13:05:16,273 DEV : loss 0.10202094167470932 - f1-score (micro avg) 0.9799
2022-03-30 13:05:16,286 BAD EPOCHS (no improvement): 3
2022-03-30 13:05:18,224 ----------------------------------------------------------------------------------------------------
2022-03-30 13:06:20,779 epoch 151 - iter 30/300 - loss 0.02923949 - samples/sec: 7.68 - lr: 0.000391
2022-03-30 13:07:20,679 epoch 151 - iter 60/300 - loss 0.02844942 - samples/sec: 8.15 - lr: 0.000391
2022-03-30 13:08:15,320 epoch 151 - iter 90/300 - loss 0.02703875 - samples/sec: 8.94 - lr: 0.000391
2022-03-30 13:09:18,118 epoch 151 - iter 120/300 - loss 0.02737682 - samples/sec: 7.77 - lr: 0.000391
2022-03-30 13:10:22,493 epoch 151 - iter 150/300 - loss 0.02725408 - samples/sec: 7.57 - lr: 0.000391
2022-03-30 13:11:18,619 epoch 151 - iter 180/300 - loss 0.02774154 - samples/sec: 8.70 - lr: 0.000391
2022-03-30 13:12:16,135 epoch 151 - iter 210/300 - loss 0.02828949 - samples/sec: 8.48 - lr: 0.000391
2022-03-30 13:13:20,885 epoch 151 - iter 240/300 - loss 0.02853759 - samples/sec: 7.53 - lr: 0.000391
2022-03-30 13:14:20,337 epoch 151 - iter 270/300 - loss 0.02806431 - samples/sec: 8.21 - lr: 0.000391
2022-03-30 13:15:18,141 epoch 151 - iter 300/300 - loss 0.02838301 - samples/sec: 8.44 - lr: 0.000391
2022-03-30 13:15:19,109 ----------------------------------------------------------------------------------------------------
2022-03-30 13:15:19,118 EPOCH 151 done: loss 0.0284 - lr 0.0003906
2022-03-30 13:15:55,729 DEV : loss 0.10201210528612137 - f1-score (micro avg) 0.98
2022-03-30 13:15:55,743 BAD EPOCHS (no improvement): 4
2022-03-30 13:15:57,761 ----------------------------------------------------------------------------------------------------
2022-03-30 13:16:51,190 epoch 152 - iter 30/300 - loss 0.03240213 - samples/sec: 8.99 - lr: 0.000195
2022-03-30 13:17:52,520 epoch 152 - iter 60/300 - loss 0.02845009 - samples/sec: 7.94 - lr: 0.000195
2022-03-30 13:18:51,431 epoch 152 - iter 90/300 - loss 0.02996368 - samples/sec: 8.27 - lr: 0.000195
2022-03-30 13:19:51,886 epoch 152 - iter 120/300 - loss 0.02991149 - samples/sec: 8.06 - lr: 0.000195
2022-03-30 13:20:55,106 epoch 152 - iter 150/300 - loss 0.02958199 - samples/sec: 7.70 - lr: 0.000195
2022-03-30 13:21:53,509 epoch 152 - iter 180/300 - loss 0.02972192 - samples/sec: 8.35 - lr: 0.000195
2022-03-30 13:22:52,257 epoch 152 - iter 210/300 - loss 0.03019008 - samples/sec: 8.30 - lr: 0.000195
2022-03-30 13:23:50,768 epoch 152 - iter 240/300 - loss 0.03007176 - samples/sec: 8.33 - lr: 0.000195
2022-03-30 13:24:53,673 epoch 152 - iter 270/300 - loss 0.03025321 - samples/sec: 7.81 - lr: 0.000195
2022-03-30 13:25:54,892 epoch 152 - iter 300/300 - loss 0.03032258 - samples/sec: 7.99 - lr: 0.000195
2022-03-30 13:25:56,061 ----------------------------------------------------------------------------------------------------
2022-03-30 13:25:56,072 EPOCH 152 done: loss 0.0303 - lr 0.0001953
2022-03-30 13:26:34,122 DEV : loss 0.10201038420200348 - f1-score (micro avg) 0.98
2022-03-30 13:26:34,143 BAD EPOCHS (no improvement): 1
2022-03-30 13:26:36,389 ----------------------------------------------------------------------------------------------------
2022-03-30 13:27:36,309 epoch 153 - iter 30/300 - loss 0.02570798 - samples/sec: 8.01 - lr: 0.000195
2022-03-30 13:28:42,666 epoch 153 - iter 60/300 - loss 0.02826468 - samples/sec: 7.36 - lr: 0.000195
2022-03-30 13:29:47,512 epoch 153 - iter 90/300 - loss 0.02966814 - samples/sec: 7.52 - lr: 0.000195
2022-03-30 13:30:51,568 epoch 153 - iter 120/300 - loss 0.02962908 - samples/sec: 7.60 - lr: 0.000195
2022-03-30 13:31:50,204 epoch 153 - iter 150/300 - loss 0.02963920 - samples/sec: 8.33 - lr: 0.000195
2022-03-30 13:32:46,591 epoch 153 - iter 180/300 - loss 0.03019015 - samples/sec: 8.67 - lr: 0.000195
2022-03-30 13:33:41,403 epoch 153 - iter 210/300 - loss 0.03069690 - samples/sec: 8.90 - lr: 0.000195
2022-03-30 13:34:41,987 epoch 153 - iter 240/300 - loss 0.03112855 - samples/sec: 8.06 - lr: 0.000195
2022-03-30 13:35:42,286 epoch 153 - iter 270/300 - loss 0.03128193 - samples/sec: 8.09 - lr: 0.000195
2022-03-30 13:36:42,717 epoch 153 - iter 300/300 - loss 0.03096604 - samples/sec: 8.07 - lr: 0.000195
2022-03-30 13:36:43,706 ----------------------------------------------------------------------------------------------------
2022-03-30 13:36:43,716 EPOCH 153 done: loss 0.0310 - lr 0.0001953
2022-03-30 13:37:19,205 DEV : loss 0.10202408581972122 - f1-score (micro avg) 0.98
2022-03-30 13:37:19,219 BAD EPOCHS (no improvement): 2
2022-03-30 13:37:21,203 ----------------------------------------------------------------------------------------------------
2022-03-30 13:38:20,787 epoch 154 - iter 30/300 - loss 0.03084118 - samples/sec: 8.06 - lr: 0.000195
2022-03-30 13:39:23,198 epoch 154 - iter 60/300 - loss 0.03093184 - samples/sec: 7.82 - lr: 0.000195
2022-03-30 13:40:23,736 epoch 154 - iter 90/300 - loss 0.03080735 - samples/sec: 8.05 - lr: 0.000195
2022-03-30 13:41:23,844 epoch 154 - iter 120/300 - loss 0.03091830 - samples/sec: 8.12 - lr: 0.000195
2022-03-30 13:42:24,937 epoch 154 - iter 150/300 - loss 0.03055376 - samples/sec: 7.99 - lr: 0.000195
2022-03-30 13:43:28,630 epoch 154 - iter 180/300 - loss 0.03022854 - samples/sec: 7.65 - lr: 0.000195
2022-03-30 13:44:24,721 epoch 154 - iter 210/300 - loss 0.03042921 - samples/sec: 8.70 - lr: 0.000195
2022-03-30 13:45:22,613 epoch 154 - iter 240/300 - loss 0.03014891 - samples/sec: 8.44 - lr: 0.000195
2022-03-30 13:46:21,702 epoch 154 - iter 270/300 - loss 0.03032649 - samples/sec: 8.26 - lr: 0.000195
2022-03-30 13:47:19,740 epoch 154 - iter 300/300 - loss 0.03013623 - samples/sec: 8.41 - lr: 0.000195
2022-03-30 13:47:20,775 ----------------------------------------------------------------------------------------------------
2022-03-30 13:47:20,785 EPOCH 154 done: loss 0.0301 - lr 0.0001953
2022-03-30 13:47:54,972 DEV : loss 0.10201508551836014 - f1-score (micro avg) 0.98
2022-03-30 13:47:54,985 BAD EPOCHS (no improvement): 3
2022-03-30 13:47:57,280 ----------------------------------------------------------------------------------------------------
2022-03-30 13:48:53,744 epoch 155 - iter 30/300 - loss 0.02969199 - samples/sec: 8.50 - lr: 0.000195
2022-03-30 13:50:00,140 epoch 155 - iter 60/300 - loss 0.02952413 - samples/sec: 7.34 - lr: 0.000195
2022-03-30 13:50:57,335 epoch 155 - iter 90/300 - loss 0.02895664 - samples/sec: 8.55 - lr: 0.000195
2022-03-30 13:52:00,770 epoch 155 - iter 120/300 - loss 0.02939865 - samples/sec: 7.70 - lr: 0.000195
2022-03-30 13:52:55,754 epoch 155 - iter 150/300 - loss 0.02914908 - samples/sec: 8.89 - lr: 0.000195
2022-03-30 13:53:58,653 epoch 155 - iter 180/300 - loss 0.02964743 - samples/sec: 7.75 - lr: 0.000195
2022-03-30 13:54:58,348 epoch 155 - iter 210/300 - loss 0.02989400 - samples/sec: 8.17 - lr: 0.000195
2022-03-30 13:55:57,923 epoch 155 - iter 240/300 - loss 0.03024802 - samples/sec: 8.19 - lr: 0.000195
2022-03-30 13:56:54,633 epoch 155 - iter 270/300 - loss 0.03030596 - samples/sec: 8.61 - lr: 0.000195
2022-03-30 13:57:51,732 epoch 155 - iter 300/300 - loss 0.03018545 - samples/sec: 8.56 - lr: 0.000195
2022-03-30 13:57:52,773 ----------------------------------------------------------------------------------------------------
2022-03-30 13:57:52,781 EPOCH 155 done: loss 0.0302 - lr 0.0001953
2022-03-30 13:58:26,906 DEV : loss 0.10200126469135284 - f1-score (micro avg) 0.98
2022-03-30 13:58:26,923 BAD EPOCHS (no improvement): 4
2022-03-30 13:58:29,111 ----------------------------------------------------------------------------------------------------
2022-03-30 13:58:29,114 ----------------------------------------------------------------------------------------------------
2022-03-30 13:58:29,118 learning rate too small - quitting training!
2022-03-30 13:58:29,132 ----------------------------------------------------------------------------------------------------
2022-03-30 13:58:40,931 ----------------------------------------------------------------------------------------------------
2022-03-30 13:58:40,950 loading file /content/drive/MyDrive/project/data/upos/model/best-model.pt
2022-03-30 14:07:05,835 0.977 0.977 0.977 0.977
2022-03-30 14:07:05,843
Results:
- F-score (micro) 0.977
- F-score (macro) 0.9456
- Accuracy 0.977
By class:
precision recall f1-score support
NOUN 0.9768 0.9850 0.9809 6420
ADP 0.9947 0.9916 0.9932 1909
ADJ 0.9336 0.9128 0.9231 1525
PUNCT 1.0000 1.0000 1.0000 1365
VERB 0.9831 0.9693 0.9762 1141
CCONJ 0.9912 0.9924 0.9918 794
AUX 0.9604 0.9780 0.9691 546
PRON 0.9751 0.9845 0.9798 517
SCONJ 0.9777 0.9757 0.9767 494
NUM 0.9948 1.0000 0.9974 385
ADV 0.9368 0.9006 0.9183 362
DET 0.9742 0.9711 0.9726 311
PART 0.9916 1.0000 0.9958 237
INTJ 0.8889 0.8000 0.8421 10
X 0.7143 0.6250 0.6667 8
micro avg 0.9770 0.9770 0.9770 16024
macro avg 0.9529 0.9391 0.9456 16024
weighted avg 0.9769 0.9770 0.9769 16024
samples avg 0.9770 0.9770 0.9770 16024
2022-03-30 14:07:05,846 ----------------------------------------------------------------------------------------------------