|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6300 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-m3 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: The consolidated financial statements and accompanying notes listed |
|
in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K. |
|
sentences: |
|
- How much total space does an average The Home Depot store encompass including |
|
its garden area? |
|
- What section of the Annual Report on Form 10-K contains the consolidated financial |
|
statements and accompanying notes? |
|
- What types of competitive factors does Garmin believe are important in its markets? |
|
- source_sentence: Item 3. Legal Proceedings, which covers litigation and regulatory |
|
matters, refers to Note 12 – Commitments and Contingencies for more detailed information |
|
within the Consolidated Financial Statements. |
|
sentences: |
|
- What pages contain the Financial Statements and Supplementary Data in IBM’s 2023 |
|
Annual Report to Stockholders? |
|
- In which note can further details on Legal Proceedings be found within the Consolidated |
|
Financial Statements? |
|
- What is the title of Item 8 in the document? |
|
- source_sentence: Net Revenues for the Entertainment segment were $659.3 million |
|
in 2023. |
|
sentences: |
|
- What were the net revenues for the Entertainment segment in 2023? |
|
- How much net cash was provided by operating activities in 2023? |
|
- What was the net income reported for the fiscal year ending in August 2023? |
|
- source_sentence: 'The capital allocation program focuses on three objectives: (1) |
|
grow our business at an average target ROIC-adjusted rate of 20% or greater; (2) |
|
maintain a strong investment-grade balance sheet, including a target average automotive |
|
cash balance of $18.0 billion; and (3) after the first two objectives are met, |
|
return available cash to shareholders.' |
|
sentences: |
|
- Why is ICE Mortgage Technology subject to the examination by the Federal Financial |
|
Institutions Examination Council (FFIEC) and its member agencies? |
|
- What type of regulations do U.S. automobiles need to comply with under the National |
|
Highway Traffic Safety Administration? |
|
- What are the three objectives of the capital allocation program referenced? |
|
- source_sentence: As of January 28, 2024 the net carrying value of our inventories |
|
was $1.3 billion, which included provisions for obsolete and damaged inventory |
|
of $139.7 million. |
|
sentences: |
|
- What is the status of the company's inventory as of January 28, 2024, in terms |
|
of its valuation and provisions for obsolescence? |
|
- What is the relationship between the ESG goals and the long-term growth strategy? |
|
- What were the financial impacts of Ford's investments in Rivian and Argo in the |
|
year 2022? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: BGE-M3 Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 1024 |
|
type: dim_1024 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7171428571428572 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8314285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.87 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9142857142857143 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7171428571428572 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27714285714285714 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.174 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09142857142857141 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7171428571428572 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8314285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.87 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9142857142857143 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8152097277196483 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7835873015873015 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7867088346410263 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7128571428571429 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8342857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8657142857142858 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.91 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7128571428571429 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2780952380952381 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17314285714285713 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09099999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7128571428571429 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8342857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8657142857142858 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.91 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8122143155463835 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7808730158730155 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7843065190190194 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8357142857142857 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.91 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2785714285714286 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17285714285714285 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09099999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8357142857142857 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.91 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8109635546819154 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7792959183673466 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.782703758965192 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 384 |
|
type: dim_384 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7142857142857143 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8328571428571429 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8628571428571429 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9128571428571428 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7142857142857143 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2776190476190476 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17257142857142854 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09128571428571428 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7142857142857143 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8328571428571429 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8628571428571429 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9128571428571428 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8125530857386527 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7806292517006799 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7837508100457361 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE-M3 Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision babcf60cae0a1f438d7ade582983d4ba462303c2 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("haophancs/bge-m3-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'As of January 28, 2024 the net carrying value of our inventories was $1.3 billion, which included provisions for obsolete and damaged inventory of $139.7 million.', |
|
"What is the status of the company's inventory as of January 28, 2024, in terms of its valuation and provisions for obsolescence?", |
|
'What is the relationship between the ESG goals and the long-term growth strategy?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_1024` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7171 | |
|
| cosine_accuracy@3 | 0.8314 | |
|
| cosine_accuracy@5 | 0.87 | |
|
| cosine_accuracy@10 | 0.9143 | |
|
| cosine_precision@1 | 0.7171 | |
|
| cosine_precision@3 | 0.2771 | |
|
| cosine_precision@5 | 0.174 | |
|
| cosine_precision@10 | 0.0914 | |
|
| cosine_recall@1 | 0.7171 | |
|
| cosine_recall@3 | 0.8314 | |
|
| cosine_recall@5 | 0.87 | |
|
| cosine_recall@10 | 0.9143 | |
|
| cosine_ndcg@10 | 0.8152 | |
|
| cosine_mrr@10 | 0.7836 | |
|
| **cosine_map@100** | **0.7867** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7129 | |
|
| cosine_accuracy@3 | 0.8343 | |
|
| cosine_accuracy@5 | 0.8657 | |
|
| cosine_accuracy@10 | 0.91 | |
|
| cosine_precision@1 | 0.7129 | |
|
| cosine_precision@3 | 0.2781 | |
|
| cosine_precision@5 | 0.1731 | |
|
| cosine_precision@10 | 0.091 | |
|
| cosine_recall@1 | 0.7129 | |
|
| cosine_recall@3 | 0.8343 | |
|
| cosine_recall@5 | 0.8657 | |
|
| cosine_recall@10 | 0.91 | |
|
| cosine_ndcg@10 | 0.8122 | |
|
| cosine_mrr@10 | 0.7809 | |
|
| **cosine_map@100** | **0.7843** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7114 | |
|
| cosine_accuracy@3 | 0.8357 | |
|
| cosine_accuracy@5 | 0.8643 | |
|
| cosine_accuracy@10 | 0.91 | |
|
| cosine_precision@1 | 0.7114 | |
|
| cosine_precision@3 | 0.2786 | |
|
| cosine_precision@5 | 0.1729 | |
|
| cosine_precision@10 | 0.091 | |
|
| cosine_recall@1 | 0.7114 | |
|
| cosine_recall@3 | 0.8357 | |
|
| cosine_recall@5 | 0.8643 | |
|
| cosine_recall@10 | 0.91 | |
|
| cosine_ndcg@10 | 0.811 | |
|
| cosine_mrr@10 | 0.7793 | |
|
| **cosine_map@100** | **0.7827** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_384` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7143 | |
|
| cosine_accuracy@3 | 0.8329 | |
|
| cosine_accuracy@5 | 0.8629 | |
|
| cosine_accuracy@10 | 0.9129 | |
|
| cosine_precision@1 | 0.7143 | |
|
| cosine_precision@3 | 0.2776 | |
|
| cosine_precision@5 | 0.1726 | |
|
| cosine_precision@10 | 0.0913 | |
|
| cosine_recall@1 | 0.7143 | |
|
| cosine_recall@3 | 0.8329 | |
|
| cosine_recall@5 | 0.8629 | |
|
| cosine_recall@10 | 0.9129 | |
|
| cosine_ndcg@10 | 0.8126 | |
|
| cosine_mrr@10 | 0.7806 | |
|
| **cosine_map@100** | **0.7838** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,300 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 51.97 tokens</li><li>max: 1146 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.63 tokens</li><li>max: 47 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>From fiscal year 2022 to 2023, the cost of revenue as a percentage of total net revenue decreased by 3 percent.</code> | <code>What was the percentage change in cost of revenue as a percentage of total net revenue from fiscal year 2022 to 2023?</code> | |
|
| <code> •Operating income increased $321 million, or 2%, to $18.1 billion versus year ago due to the increase in net sales, partially offset by a modest decrease in operating margin.</code> | <code>What factors contributed to the increase in operating income for Procter & Gamble in 2023?</code> | |
|
| <code>market specific brands including 'Aurrera,' 'Lider,' and 'PhonePe.'</code> | <code>What specific brands does Walmart International market?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
1024, |
|
768, |
|
512, |
|
384 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 2 |
|
- `gradient_accumulation_steps`: 2 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 2 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 2 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_384_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:--------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| |
|
| 0.0127 | 10 | 0.2059 | - | - | - | - | |
|
| 0.0254 | 20 | 0.2612 | - | - | - | - | |
|
| 0.0381 | 30 | 0.0873 | - | - | - | - | |
|
| 0.0508 | 40 | 0.1352 | - | - | - | - | |
|
| 0.0635 | 50 | 0.156 | - | - | - | - | |
|
| 0.0762 | 60 | 0.0407 | - | - | - | - | |
|
| 0.0889 | 70 | 0.09 | - | - | - | - | |
|
| 0.1016 | 80 | 0.027 | - | - | - | - | |
|
| 0.1143 | 90 | 0.0978 | - | - | - | - | |
|
| 0.1270 | 100 | 0.0105 | - | - | - | - | |
|
| 0.1397 | 110 | 0.0402 | - | - | - | - | |
|
| 0.1524 | 120 | 0.0745 | - | - | - | - | |
|
| 0.1651 | 130 | 0.0655 | - | - | - | - | |
|
| 0.1778 | 140 | 0.0075 | - | - | - | - | |
|
| 0.1905 | 150 | 0.0141 | - | - | - | - | |
|
| 0.2032 | 160 | 0.0615 | - | - | - | - | |
|
| 0.2159 | 170 | 0.0029 | - | - | - | - | |
|
| 0.2286 | 180 | 0.0269 | - | - | - | - | |
|
| 0.2413 | 190 | 0.0724 | - | - | - | - | |
|
| 0.2540 | 200 | 0.0218 | - | - | - | - | |
|
| 0.2667 | 210 | 0.0027 | - | - | - | - | |
|
| 0.2794 | 220 | 0.007 | - | - | - | - | |
|
| 0.2921 | 230 | 0.0814 | - | - | - | - | |
|
| 0.3048 | 240 | 0.0326 | - | - | - | - | |
|
| 0.3175 | 250 | 0.0061 | - | - | - | - | |
|
| 0.3302 | 260 | 0.0471 | - | - | - | - | |
|
| 0.3429 | 270 | 0.0115 | - | - | - | - | |
|
| 0.3556 | 280 | 0.0021 | - | - | - | - | |
|
| 0.3683 | 290 | 0.0975 | - | - | - | - | |
|
| 0.3810 | 300 | 0.0572 | - | - | - | - | |
|
| 0.3937 | 310 | 0.0125 | - | - | - | - | |
|
| 0.4063 | 320 | 0.04 | - | - | - | - | |
|
| 0.4190 | 330 | 0.0023 | - | - | - | - | |
|
| 0.4317 | 340 | 0.0121 | - | - | - | - | |
|
| 0.4444 | 350 | 0.0116 | - | - | - | - | |
|
| 0.4571 | 360 | 0.0059 | - | - | - | - | |
|
| 0.4698 | 370 | 0.0217 | - | - | - | - | |
|
| 0.4825 | 380 | 0.0294 | - | - | - | - | |
|
| 0.4952 | 390 | 0.1102 | - | - | - | - | |
|
| 0.5079 | 400 | 0.0103 | - | - | - | - | |
|
| 0.5206 | 410 | 0.0023 | - | - | - | - | |
|
| 0.5333 | 420 | 0.0157 | - | - | - | - | |
|
| 0.5460 | 430 | 0.0805 | - | - | - | - | |
|
| 0.5587 | 440 | 0.0168 | - | - | - | - | |
|
| 0.5714 | 450 | 0.1279 | - | - | - | - | |
|
| 0.5841 | 460 | 0.2012 | - | - | - | - | |
|
| 0.5968 | 470 | 0.0436 | - | - | - | - | |
|
| 0.6095 | 480 | 0.0204 | - | - | - | - | |
|
| 0.6222 | 490 | 0.0097 | - | - | - | - | |
|
| 0.6349 | 500 | 0.0013 | - | - | - | - | |
|
| 0.6476 | 510 | 0.0042 | - | - | - | - | |
|
| 0.6603 | 520 | 0.0034 | - | - | - | - | |
|
| 0.6730 | 530 | 0.0226 | - | - | - | - | |
|
| 0.6857 | 540 | 0.0267 | - | - | - | - | |
|
| 0.6984 | 550 | 0.0007 | - | - | - | - | |
|
| 0.7111 | 560 | 0.0766 | - | - | - | - | |
|
| 0.7238 | 570 | 0.2174 | - | - | - | - | |
|
| 0.7365 | 580 | 0.0089 | - | - | - | - | |
|
| 0.7492 | 590 | 0.0794 | - | - | - | - | |
|
| 0.7619 | 600 | 0.0031 | - | - | - | - | |
|
| 0.7746 | 610 | 0.0499 | - | - | - | - | |
|
| 0.7873 | 620 | 0.0105 | - | - | - | - | |
|
| 0.8 | 630 | 0.0097 | - | - | - | - | |
|
| 0.8127 | 640 | 0.0028 | - | - | - | - | |
|
| 0.8254 | 650 | 0.0029 | - | - | - | - | |
|
| 0.8381 | 660 | 0.1811 | - | - | - | - | |
|
| 0.8508 | 670 | 0.064 | - | - | - | - | |
|
| 0.8635 | 680 | 0.0139 | - | - | - | - | |
|
| 0.8762 | 690 | 0.055 | - | - | - | - | |
|
| 0.8889 | 700 | 0.0013 | - | - | - | - | |
|
| 0.9016 | 710 | 0.0402 | - | - | - | - | |
|
| 0.9143 | 720 | 0.0824 | - | - | - | - | |
|
| 0.9270 | 730 | 0.03 | - | - | - | - | |
|
| 0.9397 | 740 | 0.0337 | - | - | - | - | |
|
| 0.9524 | 750 | 0.1192 | - | - | - | - | |
|
| 0.9651 | 760 | 0.0039 | - | - | - | - | |
|
| 0.9778 | 770 | 0.004 | - | - | - | - | |
|
| 0.9905 | 780 | 0.1413 | - | - | - | - | |
|
| 0.9994 | 787 | - | 0.7851 | 0.7794 | 0.7822 | 0.7863 | |
|
| 1.0032 | 790 | 0.019 | - | - | - | - | |
|
| 1.0159 | 800 | 0.0587 | - | - | - | - | |
|
| 1.0286 | 810 | 0.0186 | - | - | - | - | |
|
| 1.0413 | 820 | 0.0018 | - | - | - | - | |
|
| 1.0540 | 830 | 0.0631 | - | - | - | - | |
|
| 1.0667 | 840 | 0.0127 | - | - | - | - | |
|
| 1.0794 | 850 | 0.0037 | - | - | - | - | |
|
| 1.0921 | 860 | 0.0029 | - | - | - | - | |
|
| 1.1048 | 870 | 0.1437 | - | - | - | - | |
|
| 1.1175 | 880 | 0.0015 | - | - | - | - | |
|
| 1.1302 | 890 | 0.0024 | - | - | - | - | |
|
| 1.1429 | 900 | 0.0133 | - | - | - | - | |
|
| 1.1556 | 910 | 0.0245 | - | - | - | - | |
|
| 1.1683 | 920 | 0.0017 | - | - | - | - | |
|
| 1.1810 | 930 | 0.0007 | - | - | - | - | |
|
| 1.1937 | 940 | 0.002 | - | - | - | - | |
|
| 1.2063 | 950 | 0.0044 | - | - | - | - | |
|
| 1.2190 | 960 | 0.0009 | - | - | - | - | |
|
| 1.2317 | 970 | 0.01 | - | - | - | - | |
|
| 1.2444 | 980 | 0.0026 | - | - | - | - | |
|
| 1.2571 | 990 | 0.0017 | - | - | - | - | |
|
| 1.2698 | 1000 | 0.0014 | - | - | - | - | |
|
| 1.2825 | 1010 | 0.0009 | - | - | - | - | |
|
| 1.2952 | 1020 | 0.0829 | - | - | - | - | |
|
| 1.3079 | 1030 | 0.0011 | - | - | - | - | |
|
| 1.3206 | 1040 | 0.012 | - | - | - | - | |
|
| 1.3333 | 1050 | 0.0019 | - | - | - | - | |
|
| 1.3460 | 1060 | 0.0007 | - | - | - | - | |
|
| 1.3587 | 1070 | 0.0141 | - | - | - | - | |
|
| 1.3714 | 1080 | 0.0003 | - | - | - | - | |
|
| 1.3841 | 1090 | 0.001 | - | - | - | - | |
|
| 1.3968 | 1100 | 0.0005 | - | - | - | - | |
|
| 1.4095 | 1110 | 0.0031 | - | - | - | - | |
|
| 1.4222 | 1120 | 0.0004 | - | - | - | - | |
|
| 1.4349 | 1130 | 0.0054 | - | - | - | - | |
|
| 1.4476 | 1140 | 0.0003 | - | - | - | - | |
|
| 1.4603 | 1150 | 0.0007 | - | - | - | - | |
|
| 1.4730 | 1160 | 0.0009 | - | - | - | - | |
|
| 1.4857 | 1170 | 0.001 | - | - | - | - | |
|
| 1.4984 | 1180 | 0.0006 | - | - | - | - | |
|
| 1.5111 | 1190 | 0.0046 | - | - | - | - | |
|
| 1.5238 | 1200 | 0.0003 | - | - | - | - | |
|
| 1.5365 | 1210 | 0.0002 | - | - | - | - | |
|
| 1.5492 | 1220 | 0.004 | - | - | - | - | |
|
| 1.5619 | 1230 | 0.0017 | - | - | - | - | |
|
| 1.5746 | 1240 | 0.0003 | - | - | - | - | |
|
| 1.5873 | 1250 | 0.0027 | - | - | - | - | |
|
| 1.6 | 1260 | 0.1134 | - | - | - | - | |
|
| 1.6127 | 1270 | 0.0007 | - | - | - | - | |
|
| 1.6254 | 1280 | 0.0005 | - | - | - | - | |
|
| 1.6381 | 1290 | 0.0008 | - | - | - | - | |
|
| 1.6508 | 1300 | 0.0001 | - | - | - | - | |
|
| 1.6635 | 1310 | 0.0023 | - | - | - | - | |
|
| 1.6762 | 1320 | 0.0005 | - | - | - | - | |
|
| 1.6889 | 1330 | 0.0004 | - | - | - | - | |
|
| 1.7016 | 1340 | 0.0003 | - | - | - | - | |
|
| 1.7143 | 1350 | 0.0347 | - | - | - | - | |
|
| 1.7270 | 1360 | 0.0339 | - | - | - | - | |
|
| 1.7397 | 1370 | 0.0003 | - | - | - | - | |
|
| 1.7524 | 1380 | 0.0005 | - | - | - | - | |
|
| 1.7651 | 1390 | 0.0002 | - | - | - | - | |
|
| 1.7778 | 1400 | 0.0031 | - | - | - | - | |
|
| 1.7905 | 1410 | 0.0002 | - | - | - | - | |
|
| 1.8032 | 1420 | 0.0012 | - | - | - | - | |
|
| 1.8159 | 1430 | 0.0002 | - | - | - | - | |
|
| 1.8286 | 1440 | 0.0002 | - | - | - | - | |
|
| 1.8413 | 1450 | 0.0004 | - | - | - | - | |
|
| 1.8540 | 1460 | 0.011 | - | - | - | - | |
|
| 1.8667 | 1470 | 0.0824 | - | - | - | - | |
|
| 1.8794 | 1480 | 0.0003 | - | - | - | - | |
|
| 1.8921 | 1490 | 0.0004 | - | - | - | - | |
|
| 1.9048 | 1500 | 0.0006 | - | - | - | - | |
|
| 1.9175 | 1510 | 0.015 | - | - | - | - | |
|
| 1.9302 | 1520 | 0.0004 | - | - | - | - | |
|
| 1.9429 | 1530 | 0.0004 | - | - | - | - | |
|
| 1.9556 | 1540 | 0.0011 | - | - | - | - | |
|
| 1.9683 | 1550 | 0.0003 | - | - | - | - | |
|
| 1.9810 | 1560 | 0.0006 | - | - | - | - | |
|
| 1.9937 | 1570 | 0.0042 | - | - | - | - | |
|
| 2.0 | 1575 | - | 0.7862 | 0.7855 | 0.7852 | 0.7878 | |
|
| 2.0063 | 1580 | 0.0005 | - | - | - | - | |
|
| 2.0190 | 1590 | 0.002 | - | - | - | - | |
|
| 2.0317 | 1600 | 0.0013 | - | - | - | - | |
|
| 2.0444 | 1610 | 0.0002 | - | - | - | - | |
|
| 2.0571 | 1620 | 0.0035 | - | - | - | - | |
|
| 2.0698 | 1630 | 0.0004 | - | - | - | - | |
|
| 2.0825 | 1640 | 0.0002 | - | - | - | - | |
|
| 2.0952 | 1650 | 0.0032 | - | - | - | - | |
|
| 2.1079 | 1660 | 0.0916 | - | - | - | - | |
|
| 2.1206 | 1670 | 0.0002 | - | - | - | - | |
|
| 2.1333 | 1680 | 0.0006 | - | - | - | - | |
|
| 2.1460 | 1690 | 0.0002 | - | - | - | - | |
|
| 2.1587 | 1700 | 0.0003 | - | - | - | - | |
|
| 2.1714 | 1710 | 0.0001 | - | - | - | - | |
|
| 2.1841 | 1720 | 0.0001 | - | - | - | - | |
|
| 2.1968 | 1730 | 0.0004 | - | - | - | - | |
|
| 2.2095 | 1740 | 0.0004 | - | - | - | - | |
|
| 2.2222 | 1750 | 0.0001 | - | - | - | - | |
|
| 2.2349 | 1760 | 0.0002 | - | - | - | - | |
|
| 2.2476 | 1770 | 0.0007 | - | - | - | - | |
|
| 2.2603 | 1780 | 0.0001 | - | - | - | - | |
|
| 2.2730 | 1790 | 0.0002 | - | - | - | - | |
|
| 2.2857 | 1800 | 0.0004 | - | - | - | - | |
|
| 2.2984 | 1810 | 0.0711 | - | - | - | - | |
|
| 2.3111 | 1820 | 0.0001 | - | - | - | - | |
|
| 2.3238 | 1830 | 0.0005 | - | - | - | - | |
|
| 2.3365 | 1840 | 0.0004 | - | - | - | - | |
|
| 2.3492 | 1850 | 0.0001 | - | - | - | - | |
|
| 2.3619 | 1860 | 0.0005 | - | - | - | - | |
|
| 2.3746 | 1870 | 0.0003 | - | - | - | - | |
|
| 2.3873 | 1880 | 0.0001 | - | - | - | - | |
|
| 2.4 | 1890 | 0.0002 | - | - | - | - | |
|
| 2.4127 | 1900 | 0.0001 | - | - | - | - | |
|
| 2.4254 | 1910 | 0.0002 | - | - | - | - | |
|
| 2.4381 | 1920 | 0.0002 | - | - | - | - | |
|
| 2.4508 | 1930 | 0.0002 | - | - | - | - | |
|
| 2.4635 | 1940 | 0.0004 | - | - | - | - | |
|
| 2.4762 | 1950 | 0.0001 | - | - | - | - | |
|
| 2.4889 | 1960 | 0.0002 | - | - | - | - | |
|
| 2.5016 | 1970 | 0.0002 | - | - | - | - | |
|
| 2.5143 | 1980 | 0.0001 | - | - | - | - | |
|
| 2.5270 | 1990 | 0.0001 | - | - | - | - | |
|
| 2.5397 | 2000 | 0.0002 | - | - | - | - | |
|
| 2.5524 | 2010 | 0.0023 | - | - | - | - | |
|
| 2.5651 | 2020 | 0.0002 | - | - | - | - | |
|
| 2.5778 | 2030 | 0.0001 | - | - | - | - | |
|
| 2.5905 | 2040 | 0.0003 | - | - | - | - | |
|
| 2.6032 | 2050 | 0.0003 | - | - | - | - | |
|
| 2.6159 | 2060 | 0.0002 | - | - | - | - | |
|
| 2.6286 | 2070 | 0.0001 | - | - | - | - | |
|
| 2.6413 | 2080 | 0.0 | - | - | - | - | |
|
| 2.6540 | 2090 | 0.0001 | - | - | - | - | |
|
| 2.6667 | 2100 | 0.0001 | - | - | - | - | |
|
| 2.6794 | 2110 | 0.0001 | - | - | - | - | |
|
| 2.6921 | 2120 | 0.0001 | - | - | - | - | |
|
| 2.7048 | 2130 | 0.0001 | - | - | - | - | |
|
| 2.7175 | 2140 | 0.0048 | - | - | - | - | |
|
| 2.7302 | 2150 | 0.0005 | - | - | - | - | |
|
| 2.7429 | 2160 | 0.0001 | - | - | - | - | |
|
| 2.7556 | 2170 | 0.0001 | - | - | - | - | |
|
| 2.7683 | 2180 | 0.0001 | - | - | - | - | |
|
| 2.7810 | 2190 | 0.0001 | - | - | - | - | |
|
| 2.7937 | 2200 | 0.0001 | - | - | - | - | |
|
| 2.8063 | 2210 | 0.0001 | - | - | - | - | |
|
| 2.8190 | 2220 | 0.0001 | - | - | - | - | |
|
| 2.8317 | 2230 | 0.0002 | - | - | - | - | |
|
| 2.8444 | 2240 | 0.0036 | - | - | - | - | |
|
| 2.8571 | 2250 | 0.0001 | - | - | - | - | |
|
| 2.8698 | 2260 | 0.0368 | - | - | - | - | |
|
| 2.8825 | 2270 | 0.0003 | - | - | - | - | |
|
| 2.8952 | 2280 | 0.0002 | - | - | - | - | |
|
| 2.9079 | 2290 | 0.0001 | - | - | - | - | |
|
| 2.9206 | 2300 | 0.0005 | - | - | - | - | |
|
| 2.9333 | 2310 | 0.0001 | - | - | - | - | |
|
| 2.9460 | 2320 | 0.0001 | - | - | - | - | |
|
| 2.9587 | 2330 | 0.0003 | - | - | - | - | |
|
| 2.9714 | 2340 | 0.0001 | - | - | - | - | |
|
| 2.9841 | 2350 | 0.0001 | - | - | - | - | |
|
| 2.9968 | 2360 | 0.0002 | - | - | - | - | |
|
| **2.9994** | **2362** | **-** | **0.7864** | **0.7805** | **0.7838** | **0.7852** | |
|
| 3.0095 | 2370 | 0.0025 | - | - | - | - | |
|
| 3.0222 | 2380 | 0.0002 | - | - | - | - | |
|
| 3.0349 | 2390 | 0.0001 | - | - | - | - | |
|
| 3.0476 | 2400 | 0.0001 | - | - | - | - | |
|
| 3.0603 | 2410 | 0.0001 | - | - | - | - | |
|
| 3.0730 | 2420 | 0.0001 | - | - | - | - | |
|
| 3.0857 | 2430 | 0.0001 | - | - | - | - | |
|
| 3.0984 | 2440 | 0.0002 | - | - | - | - | |
|
| 3.1111 | 2450 | 0.0116 | - | - | - | - | |
|
| 3.1238 | 2460 | 0.0002 | - | - | - | - | |
|
| 3.1365 | 2470 | 0.0001 | - | - | - | - | |
|
| 3.1492 | 2480 | 0.0001 | - | - | - | - | |
|
| 3.1619 | 2490 | 0.0001 | - | - | - | - | |
|
| 3.1746 | 2500 | 0.0001 | - | - | - | - | |
|
| 3.1873 | 2510 | 0.0001 | - | - | - | - | |
|
| 3.2 | 2520 | 0.0001 | - | - | - | - | |
|
| 3.2127 | 2530 | 0.0001 | - | - | - | - | |
|
| 3.2254 | 2540 | 0.0001 | - | - | - | - | |
|
| 3.2381 | 2550 | 0.0002 | - | - | - | - | |
|
| 3.2508 | 2560 | 0.0001 | - | - | - | - | |
|
| 3.2635 | 2570 | 0.0001 | - | - | - | - | |
|
| 3.2762 | 2580 | 0.0001 | - | - | - | - | |
|
| 3.2889 | 2590 | 0.0001 | - | - | - | - | |
|
| 3.3016 | 2600 | 0.063 | - | - | - | - | |
|
| 3.3143 | 2610 | 0.0001 | - | - | - | - | |
|
| 3.3270 | 2620 | 0.0001 | - | - | - | - | |
|
| 3.3397 | 2630 | 0.0001 | - | - | - | - | |
|
| 3.3524 | 2640 | 0.0001 | - | - | - | - | |
|
| 3.3651 | 2650 | 0.0002 | - | - | - | - | |
|
| 3.3778 | 2660 | 0.0001 | - | - | - | - | |
|
| 3.3905 | 2670 | 0.0001 | - | - | - | - | |
|
| 3.4032 | 2680 | 0.0001 | - | - | - | - | |
|
| 3.4159 | 2690 | 0.0001 | - | - | - | - | |
|
| 3.4286 | 2700 | 0.0001 | - | - | - | - | |
|
| 3.4413 | 2710 | 0.0001 | - | - | - | - | |
|
| 3.4540 | 2720 | 0.0002 | - | - | - | - | |
|
| 3.4667 | 2730 | 0.0001 | - | - | - | - | |
|
| 3.4794 | 2740 | 0.0001 | - | - | - | - | |
|
| 3.4921 | 2750 | 0.0001 | - | - | - | - | |
|
| 3.5048 | 2760 | 0.0001 | - | - | - | - | |
|
| 3.5175 | 2770 | 0.0002 | - | - | - | - | |
|
| 3.5302 | 2780 | 0.0001 | - | - | - | - | |
|
| 3.5429 | 2790 | 0.0001 | - | - | - | - | |
|
| 3.5556 | 2800 | 0.0001 | - | - | - | - | |
|
| 3.5683 | 2810 | 0.0001 | - | - | - | - | |
|
| 3.5810 | 2820 | 0.0001 | - | - | - | - | |
|
| 3.5937 | 2830 | 0.0001 | - | - | - | - | |
|
| 3.6063 | 2840 | 0.0001 | - | - | - | - | |
|
| 3.6190 | 2850 | 0.0 | - | - | - | - | |
|
| 3.6317 | 2860 | 0.0001 | - | - | - | - | |
|
| 3.6444 | 2870 | 0.0001 | - | - | - | - | |
|
| 3.6571 | 2880 | 0.0001 | - | - | - | - | |
|
| 3.6698 | 2890 | 0.0001 | - | - | - | - | |
|
| 3.6825 | 2900 | 0.0001 | - | - | - | - | |
|
| 3.6952 | 2910 | 0.0001 | - | - | - | - | |
|
| 3.7079 | 2920 | 0.0001 | - | - | - | - | |
|
| 3.7206 | 2930 | 0.0003 | - | - | - | - | |
|
| 3.7333 | 2940 | 0.0001 | - | - | - | - | |
|
| 3.7460 | 2950 | 0.0001 | - | - | - | - | |
|
| 3.7587 | 2960 | 0.0001 | - | - | - | - | |
|
| 3.7714 | 2970 | 0.0002 | - | - | - | - | |
|
| 3.7841 | 2980 | 0.0001 | - | - | - | - | |
|
| 3.7968 | 2990 | 0.0001 | - | - | - | - | |
|
| 3.8095 | 3000 | 0.0001 | - | - | - | - | |
|
| 3.8222 | 3010 | 0.0001 | - | - | - | - | |
|
| 3.8349 | 3020 | 0.0002 | - | - | - | - | |
|
| 3.8476 | 3030 | 0.0001 | - | - | - | - | |
|
| 3.8603 | 3040 | 0.0001 | - | - | - | - | |
|
| 3.8730 | 3050 | 0.0214 | - | - | - | - | |
|
| 3.8857 | 3060 | 0.0001 | - | - | - | - | |
|
| 3.8984 | 3070 | 0.0001 | - | - | - | - | |
|
| 3.9111 | 3080 | 0.0001 | - | - | - | - | |
|
| 3.9238 | 3090 | 0.0001 | - | - | - | - | |
|
| 3.9365 | 3100 | 0.0001 | - | - | - | - | |
|
| 3.9492 | 3110 | 0.0001 | - | - | - | - | |
|
| 3.9619 | 3120 | 0.0001 | - | - | - | - | |
|
| 3.9746 | 3130 | 0.0001 | - | - | - | - | |
|
| 3.9873 | 3140 | 0.0001 | - | - | - | - | |
|
| 3.9975 | 3148 | - | 0.7867 | 0.7838 | 0.7827 | 0.7843 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.12.2 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.2.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |