File size: 1,970 Bytes
41b7834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd18237
41b7834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-v3-edos_labelled_aggregated
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-v3-edos_labelled_aggregated

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0663
- Rouge1: 95.8792
- Rouge2: 71.25
- Rougel: 95.875
- Rougelsum: 95.8792
- Gen Len: 4.7903

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.0822        | 1.0   | 1750 | 0.0688          | 95.8375 | 71.9   | 95.8417 | 95.8333   | 4.805   |
| 0.0663        | 2.0   | 3500 | 0.0663          | 95.8792 | 71.25  | 95.875  | 95.8792   | 4.7903  |
| 0.0536        | 3.0   | 5250 | 0.0764          | 95.65   | 69.3   | 95.65   | 95.6667   | 4.758   |
| 0.0486        | 4.0   | 7000 | 0.0849          | 95.8333 | 69.925 | 95.8167 | 95.8333   | 4.7657  |
| 0.0467        | 5.0   | 8750 | 0.0946          | 95.825  | 69.8   | 95.8083 | 95.825    | 4.7635  |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3