Edit model card

scenario-TCR-NER_data-univner_full

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0917
  • Precision: 0.8470
  • Recall: 0.8570
  • F1: 0.8520
  • Accuracy: 0.9843

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1399 0.29 500 0.0671 0.7708 0.8429 0.8052 0.9803
0.0523 0.58 1000 0.0719 0.7863 0.8642 0.8234 0.9800
0.0457 0.87 1500 0.0565 0.8288 0.8583 0.8433 0.9835
0.037 1.16 2000 0.0606 0.8269 0.8680 0.8470 0.9835
0.0295 1.46 2500 0.0609 0.8393 0.8681 0.8535 0.9848
0.0289 1.75 3000 0.0597 0.8414 0.8700 0.8554 0.9845
0.0285 2.04 3500 0.0627 0.8236 0.8768 0.8493 0.9842
0.0197 2.33 4000 0.0649 0.8356 0.8641 0.8496 0.9833
0.0196 2.62 4500 0.0678 0.8387 0.8619 0.8501 0.9837
0.0198 2.91 5000 0.0677 0.8458 0.8616 0.8536 0.9840
0.0158 3.2 5500 0.0695 0.8437 0.8670 0.8552 0.9848
0.0147 3.49 6000 0.0728 0.8300 0.8707 0.8499 0.9841
0.0141 3.78 6500 0.0753 0.8360 0.8651 0.8503 0.9839
0.0137 4.07 7000 0.0748 0.8399 0.8697 0.8546 0.9843
0.0095 4.37 7500 0.0775 0.8406 0.8727 0.8564 0.9839
0.0107 4.66 8000 0.0805 0.8451 0.8738 0.8592 0.9845
0.0112 4.95 8500 0.0808 0.8501 0.8660 0.8580 0.9848
0.0076 5.24 9000 0.0864 0.8485 0.8616 0.8550 0.9840
0.0083 5.53 9500 0.0846 0.8500 0.8600 0.8550 0.9845
0.0094 5.82 10000 0.0791 0.8467 0.8663 0.8564 0.9844
0.0074 6.11 10500 0.0931 0.8514 0.8629 0.8571 0.9846
0.0065 6.4 11000 0.0967 0.8507 0.8534 0.8521 0.9840
0.0073 6.69 11500 0.0914 0.8446 0.8687 0.8565 0.9840
0.0063 6.98 12000 0.0923 0.8552 0.8579 0.8565 0.9845
0.0052 7.28 12500 0.0963 0.8539 0.8619 0.8579 0.9844
0.0061 7.57 13000 0.0917 0.8470 0.8570 0.8520 0.9843

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
14
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-TCR-NER_data-univner_full

Finetuned
(2502)
this model
Finetunes
51 models