scenario-TCR-NER_data-univner_full
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0917
- Precision: 0.8470
- Recall: 0.8570
- F1: 0.8520
- Accuracy: 0.9843
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1399 | 0.29 | 500 | 0.0671 | 0.7708 | 0.8429 | 0.8052 | 0.9803 |
0.0523 | 0.58 | 1000 | 0.0719 | 0.7863 | 0.8642 | 0.8234 | 0.9800 |
0.0457 | 0.87 | 1500 | 0.0565 | 0.8288 | 0.8583 | 0.8433 | 0.9835 |
0.037 | 1.16 | 2000 | 0.0606 | 0.8269 | 0.8680 | 0.8470 | 0.9835 |
0.0295 | 1.46 | 2500 | 0.0609 | 0.8393 | 0.8681 | 0.8535 | 0.9848 |
0.0289 | 1.75 | 3000 | 0.0597 | 0.8414 | 0.8700 | 0.8554 | 0.9845 |
0.0285 | 2.04 | 3500 | 0.0627 | 0.8236 | 0.8768 | 0.8493 | 0.9842 |
0.0197 | 2.33 | 4000 | 0.0649 | 0.8356 | 0.8641 | 0.8496 | 0.9833 |
0.0196 | 2.62 | 4500 | 0.0678 | 0.8387 | 0.8619 | 0.8501 | 0.9837 |
0.0198 | 2.91 | 5000 | 0.0677 | 0.8458 | 0.8616 | 0.8536 | 0.9840 |
0.0158 | 3.2 | 5500 | 0.0695 | 0.8437 | 0.8670 | 0.8552 | 0.9848 |
0.0147 | 3.49 | 6000 | 0.0728 | 0.8300 | 0.8707 | 0.8499 | 0.9841 |
0.0141 | 3.78 | 6500 | 0.0753 | 0.8360 | 0.8651 | 0.8503 | 0.9839 |
0.0137 | 4.07 | 7000 | 0.0748 | 0.8399 | 0.8697 | 0.8546 | 0.9843 |
0.0095 | 4.37 | 7500 | 0.0775 | 0.8406 | 0.8727 | 0.8564 | 0.9839 |
0.0107 | 4.66 | 8000 | 0.0805 | 0.8451 | 0.8738 | 0.8592 | 0.9845 |
0.0112 | 4.95 | 8500 | 0.0808 | 0.8501 | 0.8660 | 0.8580 | 0.9848 |
0.0076 | 5.24 | 9000 | 0.0864 | 0.8485 | 0.8616 | 0.8550 | 0.9840 |
0.0083 | 5.53 | 9500 | 0.0846 | 0.8500 | 0.8600 | 0.8550 | 0.9845 |
0.0094 | 5.82 | 10000 | 0.0791 | 0.8467 | 0.8663 | 0.8564 | 0.9844 |
0.0074 | 6.11 | 10500 | 0.0931 | 0.8514 | 0.8629 | 0.8571 | 0.9846 |
0.0065 | 6.4 | 11000 | 0.0967 | 0.8507 | 0.8534 | 0.8521 | 0.9840 |
0.0073 | 6.69 | 11500 | 0.0914 | 0.8446 | 0.8687 | 0.8565 | 0.9840 |
0.0063 | 6.98 | 12000 | 0.0923 | 0.8552 | 0.8579 | 0.8565 | 0.9845 |
0.0052 | 7.28 | 12500 | 0.0963 | 0.8539 | 0.8619 | 0.8579 | 0.9844 |
0.0061 | 7.57 | 13000 | 0.0917 | 0.8470 | 0.8570 | 0.8520 | 0.9843 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 14