Edit model card

scenario-kd-po-ner-full-xlmr_data-univner_en66

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 53.9174
  • Precision: 0.7598
  • Recall: 0.7433
  • F1: 0.7514
  • Accuracy: 0.9811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
87.1202 1.2755 500 72.9152 0.7420 0.6967 0.7186 0.9789
64.1514 2.5510 1000 64.7342 0.7457 0.7195 0.7323 0.9795
58.039 3.8265 1500 60.8792 0.7492 0.7143 0.7313 0.9794
54.4866 5.1020 2000 57.6543 0.7537 0.7474 0.7505 0.9811
52.1316 6.3776 2500 56.1872 0.7638 0.7329 0.7480 0.9804
50.5995 7.6531 3000 54.8584 0.7544 0.7505 0.7525 0.9810
49.7948 8.9286 3500 53.9174 0.7598 0.7433 0.7514 0.9811

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-po-ner-full-xlmr_data-univner_en66

Finetuned
(21)
this model