Edit model card

scenario-kd-pre-ner-full_data-univner_full44

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4193
  • Precision: 0.8281
  • Recall: 0.8175
  • F1: 0.8228
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.4887 0.2910 500 0.8780 0.6630 0.6943 0.6783 0.9693
0.7434 0.5821 1000 0.7247 0.7040 0.7534 0.7279 0.9735
0.6458 0.8731 1500 0.6695 0.7248 0.7692 0.7463 0.9752
0.562 1.1641 2000 0.6301 0.7474 0.7830 0.7648 0.9768
0.5142 1.4552 2500 0.6432 0.7960 0.7413 0.7677 0.9773
0.4901 1.7462 3000 0.5939 0.7664 0.7689 0.7676 0.9768
0.4625 2.0373 3500 0.5650 0.7763 0.7899 0.7830 0.9784
0.4058 2.3283 4000 0.5634 0.7941 0.7807 0.7873 0.9786
0.3987 2.6193 4500 0.5539 0.7763 0.8000 0.7880 0.9789
0.3879 2.9104 5000 0.5344 0.7848 0.8042 0.7944 0.9789
0.3586 3.2014 5500 0.5491 0.7907 0.7915 0.7911 0.9791
0.3418 3.4924 6000 0.5209 0.7757 0.8121 0.7935 0.9789
0.3334 3.7835 6500 0.5221 0.7954 0.8000 0.7977 0.9797
0.3254 4.0745 7000 0.5208 0.8027 0.7943 0.7985 0.9793
0.3037 4.3655 7500 0.5119 0.7912 0.8000 0.7956 0.9797
0.2948 4.6566 8000 0.5057 0.7966 0.8062 0.8014 0.9796
0.2929 4.9476 8500 0.5024 0.8051 0.7987 0.8019 0.9796
0.2721 5.2386 9000 0.5030 0.8024 0.7868 0.7945 0.9796
0.2654 5.5297 9500 0.4919 0.8124 0.7940 0.8031 0.9800
0.2664 5.8207 10000 0.4992 0.7986 0.8121 0.8053 0.9798
0.2582 6.1118 10500 0.4874 0.8126 0.8000 0.8063 0.9802
0.2404 6.4028 11000 0.4980 0.8081 0.8000 0.8040 0.9803
0.2408 6.6938 11500 0.4875 0.8026 0.8036 0.8031 0.9800
0.2416 6.9849 12000 0.4830 0.8074 0.7982 0.8027 0.9799
0.2246 7.2759 12500 0.4750 0.8084 0.8116 0.8100 0.9805
0.2225 7.5669 13000 0.4839 0.8017 0.8162 0.8089 0.9807
0.2235 7.8580 13500 0.4676 0.8052 0.8134 0.8093 0.9807
0.2111 8.1490 14000 0.4718 0.8151 0.8022 0.8086 0.9806
0.207 8.4400 14500 0.4777 0.8036 0.8165 0.8100 0.9802
0.2063 8.7311 15000 0.4704 0.8250 0.7995 0.8120 0.9806
0.2051 9.0221 15500 0.4718 0.8027 0.8119 0.8073 0.9803
0.1922 9.3132 16000 0.4767 0.8154 0.8077 0.8115 0.9806
0.192 9.6042 16500 0.4735 0.8160 0.8114 0.8137 0.9811
0.1946 9.8952 17000 0.4711 0.8100 0.8176 0.8138 0.9807
0.1843 10.1863 17500 0.4666 0.8096 0.8113 0.8105 0.9808
0.1801 10.4773 18000 0.4606 0.8064 0.8150 0.8107 0.9805
0.1824 10.7683 18500 0.4573 0.8158 0.8133 0.8145 0.9810
0.1775 11.0594 19000 0.4733 0.8209 0.7951 0.8078 0.9803
0.1723 11.3504 19500 0.4567 0.8164 0.8168 0.8166 0.9813
0.1716 11.6414 20000 0.4596 0.8153 0.8062 0.8107 0.9809
0.1696 11.9325 20500 0.4553 0.8141 0.8250 0.8195 0.9813
0.165 12.2235 21000 0.4474 0.8225 0.8114 0.8169 0.9810
0.1609 12.5146 21500 0.4638 0.8189 0.8094 0.8141 0.9810
0.1648 12.8056 22000 0.4459 0.8122 0.8120 0.8121 0.9809
0.1599 13.0966 22500 0.4509 0.8184 0.8104 0.8144 0.9811
0.1556 13.3877 23000 0.4603 0.8167 0.8062 0.8114 0.9808
0.1559 13.6787 23500 0.4515 0.8163 0.8150 0.8157 0.9807
0.1546 13.9697 24000 0.4436 0.8089 0.8225 0.8157 0.9809
0.1487 14.2608 24500 0.4422 0.8114 0.8228 0.8170 0.9811
0.1503 14.5518 25000 0.4467 0.8180 0.8169 0.8174 0.9813
0.1485 14.8428 25500 0.4508 0.8098 0.8215 0.8156 0.9807
0.1466 15.1339 26000 0.4441 0.8157 0.8147 0.8152 0.9812
0.1432 15.4249 26500 0.4473 0.8242 0.8111 0.8176 0.9813
0.1431 15.7159 27000 0.4513 0.8194 0.8159 0.8177 0.9812
0.1444 16.0070 27500 0.4381 0.8166 0.8209 0.8188 0.9812
0.1373 16.2980 28000 0.4420 0.8163 0.8234 0.8199 0.9815
0.1375 16.5891 28500 0.4395 0.8203 0.8179 0.8191 0.9815
0.1405 16.8801 29000 0.4409 0.8227 0.8126 0.8176 0.9810
0.1369 17.1711 29500 0.4371 0.8259 0.8124 0.8191 0.9811
0.1345 17.4622 30000 0.4428 0.8248 0.8096 0.8171 0.9809
0.1356 17.7532 30500 0.4341 0.8275 0.8175 0.8225 0.9815
0.1323 18.0442 31000 0.4312 0.8229 0.8199 0.8214 0.9813
0.1302 18.3353 31500 0.4308 0.8242 0.8222 0.8232 0.9819
0.1302 18.6263 32000 0.4308 0.8217 0.8159 0.8188 0.9814
0.1308 18.9173 32500 0.4371 0.8274 0.8042 0.8156 0.9813
0.1289 19.2084 33000 0.4339 0.8305 0.8108 0.8206 0.9815
0.1273 19.4994 33500 0.4358 0.8176 0.8158 0.8167 0.9813
0.1271 19.7905 34000 0.4403 0.8229 0.8123 0.8175 0.9810
0.125 20.0815 34500 0.4280 0.8235 0.8201 0.8218 0.9815
0.1259 20.3725 35000 0.4341 0.8243 0.8124 0.8183 0.9812
0.1233 20.6636 35500 0.4327 0.8282 0.8075 0.8177 0.9812
0.1243 20.9546 36000 0.4253 0.8252 0.8192 0.8222 0.9814
0.1233 21.2456 36500 0.4333 0.8203 0.8114 0.8158 0.9812
0.1202 21.5367 37000 0.4253 0.8196 0.8168 0.8182 0.9814
0.1223 21.8277 37500 0.4234 0.8311 0.8142 0.8225 0.9815
0.1215 22.1187 38000 0.4203 0.8249 0.8197 0.8223 0.9818
0.1177 22.4098 38500 0.4200 0.8280 0.8225 0.8253 0.9818
0.1198 22.7008 39000 0.4257 0.8267 0.8199 0.8233 0.9818
0.1187 22.9919 39500 0.4253 0.8274 0.8222 0.8248 0.9817
0.1179 23.2829 40000 0.4261 0.8267 0.8163 0.8215 0.9812
0.1168 23.5739 40500 0.4203 0.8295 0.8156 0.8225 0.9815
0.1174 23.8650 41000 0.4216 0.8278 0.8145 0.8211 0.9816
0.1159 24.1560 41500 0.4226 0.8271 0.8207 0.8239 0.9818
0.1147 24.4470 42000 0.4274 0.8328 0.8147 0.8237 0.9814
0.1168 24.7381 42500 0.4240 0.8221 0.8147 0.8184 0.9815
0.1148 25.0291 43000 0.4222 0.8224 0.8119 0.8171 0.9814
0.1141 25.3201 43500 0.4179 0.8248 0.8197 0.8222 0.9818
0.1142 25.6112 44000 0.4204 0.8235 0.8178 0.8206 0.9815
0.1131 25.9022 44500 0.4190 0.8342 0.8222 0.8282 0.9818
0.114 26.1932 45000 0.4247 0.8289 0.8201 0.8245 0.9816
0.1119 26.4843 45500 0.4198 0.8290 0.8179 0.8234 0.9815
0.1132 26.7753 46000 0.4221 0.8224 0.8166 0.8195 0.9814
0.1125 27.0664 46500 0.4216 0.8306 0.8129 0.8216 0.9814
0.1103 27.3574 47000 0.4232 0.8260 0.8126 0.8193 0.9813
0.1113 27.6484 47500 0.4200 0.8321 0.8150 0.8235 0.9815
0.112 27.9395 48000 0.4186 0.8285 0.8227 0.8256 0.9817
0.111 28.2305 48500 0.4203 0.8326 0.8182 0.8254 0.9817
0.1095 28.5215 49000 0.4194 0.8300 0.8173 0.8236 0.9816
0.1104 28.8126 49500 0.4212 0.8246 0.8192 0.8219 0.9815
0.1098 29.1036 50000 0.4189 0.8278 0.8165 0.8221 0.9814
0.1097 29.3946 50500 0.4176 0.8322 0.8173 0.8247 0.9817
0.1098 29.6857 51000 0.4173 0.8252 0.8165 0.8208 0.9813
0.1104 29.9767 51500 0.4193 0.8281 0.8175 0.8228 0.9817

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-pre-ner-full_data-univner_full44

Finetuned
(2502)
this model