metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full_data-univner_full44
results: []
scenario-kd-scr-ner-full_data-univner_full44
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6199
- Precision: 0.4352
- Recall: 0.3701
- F1: 0.4000
- Accuracy: 0.9387
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.9268 | 0.5828 | 500 | 2.5728 | 0.4130 | 0.0082 | 0.0161 | 0.9245 |
2.2111 | 1.1655 | 1000 | 2.6038 | 0.2535 | 0.0757 | 0.1166 | 0.9230 |
1.9667 | 1.7483 | 1500 | 2.4899 | 0.2074 | 0.1753 | 0.1900 | 0.9168 |
1.7467 | 2.3310 | 2000 | 2.1434 | 0.3184 | 0.1717 | 0.2231 | 0.9291 |
1.6429 | 2.9138 | 2500 | 2.1913 | 0.2798 | 0.1997 | 0.2330 | 0.9274 |
1.4992 | 3.4965 | 3000 | 2.0144 | 0.2988 | 0.2192 | 0.2529 | 0.9291 |
1.3977 | 4.0793 | 3500 | 2.0470 | 0.3052 | 0.2575 | 0.2793 | 0.9284 |
1.2778 | 4.6620 | 4000 | 2.1220 | 0.3168 | 0.2727 | 0.2931 | 0.9248 |
1.2224 | 5.2448 | 4500 | 1.9196 | 0.3273 | 0.2679 | 0.2946 | 0.9303 |
1.1262 | 5.8275 | 5000 | 1.9602 | 0.3120 | 0.3111 | 0.3115 | 0.9280 |
1.0371 | 6.4103 | 5500 | 2.0035 | 0.3100 | 0.3189 | 0.3144 | 0.9238 |
1.0053 | 6.9930 | 6000 | 1.8674 | 0.3395 | 0.2821 | 0.3081 | 0.9303 |
0.9232 | 7.5758 | 6500 | 1.8771 | 0.3290 | 0.3262 | 0.3276 | 0.9303 |
0.872 | 8.1585 | 7000 | 1.8623 | 0.3228 | 0.3269 | 0.3249 | 0.9286 |
0.8387 | 8.7413 | 7500 | 1.8017 | 0.3676 | 0.3295 | 0.3475 | 0.9341 |
0.7799 | 9.3240 | 8000 | 1.9406 | 0.2966 | 0.3473 | 0.3200 | 0.9220 |
0.7627 | 9.9068 | 8500 | 1.8042 | 0.3618 | 0.3474 | 0.3545 | 0.9336 |
0.7129 | 10.4895 | 9000 | 1.7746 | 0.3609 | 0.3440 | 0.3522 | 0.9355 |
0.6964 | 11.0723 | 9500 | 1.7343 | 0.4023 | 0.3438 | 0.3708 | 0.9379 |
0.6547 | 11.6550 | 10000 | 1.7256 | 0.3996 | 0.3616 | 0.3796 | 0.9366 |
0.6363 | 12.2378 | 10500 | 1.7899 | 0.3701 | 0.3735 | 0.3718 | 0.9319 |
0.6183 | 12.8205 | 11000 | 1.8503 | 0.3564 | 0.3575 | 0.3570 | 0.9280 |
0.5881 | 13.4033 | 11500 | 1.7546 | 0.3679 | 0.3708 | 0.3693 | 0.9325 |
0.5822 | 13.9860 | 12000 | 1.6888 | 0.4090 | 0.3331 | 0.3672 | 0.9371 |
0.5475 | 14.5688 | 12500 | 1.6986 | 0.4197 | 0.3507 | 0.3821 | 0.9371 |
0.5396 | 15.1515 | 13000 | 1.7398 | 0.3979 | 0.3698 | 0.3833 | 0.9344 |
0.5248 | 15.7343 | 13500 | 1.7333 | 0.3914 | 0.3620 | 0.3761 | 0.9340 |
0.5096 | 16.3170 | 14000 | 1.6605 | 0.4354 | 0.3561 | 0.3918 | 0.9388 |
0.5037 | 16.8998 | 14500 | 1.7022 | 0.3882 | 0.3771 | 0.3826 | 0.9355 |
0.4839 | 17.4825 | 15000 | 1.6857 | 0.4071 | 0.3587 | 0.3814 | 0.9365 |
0.4769 | 18.0653 | 15500 | 1.6599 | 0.4432 | 0.3516 | 0.3921 | 0.9389 |
0.4607 | 18.6480 | 16000 | 1.6403 | 0.4445 | 0.3650 | 0.4009 | 0.9396 |
0.4567 | 19.2308 | 16500 | 1.6463 | 0.4321 | 0.3546 | 0.3895 | 0.9388 |
0.4449 | 19.8135 | 17000 | 1.6771 | 0.4148 | 0.3836 | 0.3986 | 0.9366 |
0.4363 | 20.3963 | 17500 | 1.7157 | 0.3993 | 0.3735 | 0.3860 | 0.9341 |
0.437 | 20.9790 | 18000 | 1.6571 | 0.4148 | 0.3738 | 0.3932 | 0.9372 |
0.4221 | 21.5618 | 18500 | 1.6544 | 0.4196 | 0.3582 | 0.3865 | 0.9372 |
0.4168 | 22.1445 | 19000 | 1.6168 | 0.4472 | 0.3428 | 0.3881 | 0.9399 |
0.409 | 22.7273 | 19500 | 1.6285 | 0.4335 | 0.3572 | 0.3917 | 0.9388 |
0.4081 | 23.3100 | 20000 | 1.6653 | 0.4058 | 0.3758 | 0.3903 | 0.9353 |
0.4009 | 23.8928 | 20500 | 1.6389 | 0.4263 | 0.3662 | 0.3940 | 0.9380 |
0.3886 | 24.4755 | 21000 | 1.6027 | 0.4632 | 0.3657 | 0.4087 | 0.9407 |
0.3947 | 25.0583 | 21500 | 1.6297 | 0.4377 | 0.3632 | 0.3969 | 0.9387 |
0.3839 | 25.6410 | 22000 | 1.6285 | 0.4317 | 0.3670 | 0.3968 | 0.9384 |
0.382 | 26.2238 | 22500 | 1.6517 | 0.4226 | 0.3740 | 0.3968 | 0.9372 |
0.3797 | 26.8065 | 23000 | 1.6248 | 0.4441 | 0.3711 | 0.4043 | 0.9389 |
0.3748 | 27.3893 | 23500 | 1.6254 | 0.4379 | 0.3754 | 0.4043 | 0.9388 |
0.3736 | 27.9720 | 24000 | 1.6162 | 0.4515 | 0.3659 | 0.4042 | 0.9392 |
0.3714 | 28.5548 | 24500 | 1.6312 | 0.4289 | 0.3748 | 0.4001 | 0.9380 |
0.3719 | 29.1375 | 25000 | 1.6199 | 0.4390 | 0.3720 | 0.4027 | 0.9384 |
0.3684 | 29.7203 | 25500 | 1.6199 | 0.4352 | 0.3701 | 0.4000 | 0.9387 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1