File size: 8,107 Bytes
b9fcecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import os
from collections import defaultdict
from pathlib import Path

import torch
from safetensors.torch import load_file, save_file


def convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict):
    converted_state_dict = {k: diffusers_state_dict.pop(k) for k in list(diffusers_state_dict.keys())}

    TRANSFORMER_KEYS_RENAME_DICT = {
        "img_in": "x_embedder",
        "time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
        "time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
        "guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
        "guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
        "vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
        "vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
        ".double_blocks": ".transformer_blocks",
        ".single_blocks": ".single_transformer_blocks",
        "img_attn_q_norm": "attn.norm_q",
        "img_attn_k_norm": "attn.norm_k",
        "img_attn_proj": "attn.to_out.0",
        "txt_attn_q_norm": "attn.norm_added_q",
        "txt_attn_k_norm": "attn.norm_added_k",
        "txt_attn_proj": "attn.to_add_out",
        "img_mod.linear": "norm1.linear",
        "img_norm1": "norm1.norm",
        "img_norm2": "norm2",
        "txt_mlp": "ff_context",
        "img_mlp": "ff",
        "txt_mod.linear": "norm1_context.linear",
        "txt_norm1": "norm1.norm",
        "txt_norm2": "norm2_context",
        "modulation.linear": "norm.linear",
        "pre_norm": "norm.norm",
        "final_layer.norm_final": "norm_out.norm",
        "final_layer.linear": "proj_out",
    #   "linear2": "proj_out",
        "fc1": "net.0.proj",
        "fc2": "net.2",
        "input_embedder": "proj_in",
        # txt_in
        "individual_token_refiner.blocks": "token_refiner.refiner_blocks",
        "final_layer.adaLN_modulation.1": "norm_out.linear",
    #   "t_embedder.mlp.0": "time_text_embed.timestep_embedder.linear_1",
    #   "t_embedder.mlp.2": "time_text_embed.timestep_embedder.linear_2",
        "c_embedder": "time_text_embed.text_embedder",
        "txt_in": "context_embedder",
    #   "mlp": "ff",
    }

    TRANSFORMER_KEYS_RENAME_DICT_REVERSE = {v: k for k, v in TRANSFORMER_KEYS_RENAME_DICT.items()}

    for key in list(converted_state_dict.keys()):
        if "norm_out.linear" in key:
            weight = converted_state_dict.pop(key)
            scale, shift = weight.chunk(2, dim=0)
            new_weight = torch.cat([shift, scale], dim=0)
            converted_state_dict[key] = new_weight

        if "to_q" in key:
            if "single_transformer_blocks" in key:
                to_q = converted_state_dict.pop(key)
                to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
                to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
                to_out = converted_state_dict.pop(key.replace("attn.to_q", "proj_mlp"))
                rename_attn_key = "linear1"
                if "lora_A" in key:
                    converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
                else:
                    qkv_mlp = torch.cat([to_q, to_k, to_v, to_out], dim=0)
                    converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv_mlp
            else:
                to_q = converted_state_dict.pop(key)
                to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
                to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
                if "token_refiner" in key:
                    rename_attn_key = "self_attn_qkv"
                    if "lora_A" in key:
                        converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
                    else:
                        qkv = torch.cat([to_q, to_k, to_v], dim=0)
                        converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
                else:
                    rename_attn_key = "img_attn_qkv"
                    if "lora_A" in key:
                        converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
                    else:
                        qkv = torch.cat([to_q, to_k, to_v], dim=0)
                        converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv

        if "add_q_proj" in key:
            to_q = converted_state_dict.pop(key)
            to_k = converted_state_dict.pop(key.replace("add_q_proj", "add_k_proj"))
            to_v = converted_state_dict.pop(key.replace("add_q_proj", "add_v_proj"))
            rename_attn_key = "txt_attn_qkv"
            if "lora_A" in key:
                converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = to_q
            else:
                qkv = torch.cat([to_q, to_k, to_v], dim=0)
                converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = qkv

    for key in list(converted_state_dict.keys()):
        new_key = key[:]
        if "token_refiner" in key and "attn.to_out.0" in new_key:
            new_key = new_key.replace("attn.to_out.0", "self_attn_proj")
        if "token_refiner" in key and "ff" in new_key:
            new_key = new_key.replace("ff", "mlp")
        if "token_refiner" in key and "norm_out.linear" in new_key:
            new_key = new_key.replace("norm_out.linear", "adaLN_modulation.1")
        if "context_embedder" in key and "time_text_embed.text_embedder.linear_1" in new_key:
            new_key = new_key.replace("time_text_embed.text_embedder.linear_1", "c_embedder.linear_1")
        if "context_embedder" in key and "time_text_embed.text_embedder.linear_2" in new_key:
            new_key = new_key.replace("time_text_embed.text_embedder.linear_2", "c_embedder.linear_2")
        if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_1" in new_key:
            new_key = new_key.replace("time_text_embed.timestep_embedder.linear_1", "t_embedder.mlp.0")
        if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_2" in new_key:
            new_key = new_key.replace("time_text_embed.timestep_embedder.linear_2", "t_embedder.mlp.2")
        if "single_transformer_blocks" in key and "proj_out" in new_key:
            new_key = new_key.replace("proj_out", "linear2")
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT_REVERSE.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    # Remove "transformer." prefix
    for key in list(converted_state_dict.keys()):
        if key.startswith("transformer."):
            converted_state_dict[key[len("transformer."):]] = converted_state_dict.pop(key)

    # Add back "diffusion_model." prefix
    for key in list(converted_state_dict.keys()):
        converted_state_dict[f"diffusion_model.{key}"] = converted_state_dict.pop(key)

    return converted_state_dict


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--ckpt_path", type=str, required=True)
    parser.add_argument("--output_path_or_name", type=str, required=True)
    return parser.parse_args()


if __name__ == "__main__":
    args = get_args()

    if args.ckpt_path.endswith(".pt"):
        diffusers_state_dict = torch.load(args.ckpt_path, map_location="cpu", weights_only=True)
    elif args.ckpt_path.endswith(".safetensors"):
        diffusers_state_dict = load_file(args.ckpt_path)

    original_format_state_dict = convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict)

    output_path_or_name = Path(args.output_path_or_name)
    if output_path_or_name.as_posix().endswith(".safetensors"):
        os.makedirs(output_path_or_name.parent, exist_ok=True)
        save_file(original_format_state_dict, output_path_or_name)
    else:
        os.makedirs(output_path_or_name, exist_ok=True)
        output_path_or_name = output_path_or_name / "pytorch_lora_weights.safetensors"
        save_file(original_format_state_dict, output_path_or_name)