sana-lama / README.md
hbsanaweb's picture
Update README.md
b931a12 verified
metadata
base_model: unsloth/llama-3-8b-Instruct-bnb-4bit
library_name: transformers
license: llama3
tags:
  - facebook
  - meta
  - pytorch
  - llama
  - llama-3
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: llama3_lora
    results: []
language:
  - fa
pipeline_tag: text-generation

llama3_lora

This model is a fine-tuned version of unsloth/llama-3-8b-Instruct-bnb-4bit on the identity and the alpaca_en_demo datasets.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

import transformers
import torch

model_id = "hbsanaweb/sana-lama"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "تو یک چت بات به زبان فارسی هستی"},
    {"role": "user", "content": "شما کی هستی؟"},
]

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][-1])

Transformers AutoModelForCausalLM

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "hbsanaweb/sana-lama"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "تو یک چت بات به زبان فارسی هستی"},
    {"role": "user", "content": "شما کی هستی؟"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1