heisenberg3376's picture
Update README.md
c9d27fc verified
---
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBerta-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9502164502164502
- name: Recall
type: recall
value: 0.9604510265903736
- name: F1
type: f1
value: 0.9553063274188148
- name: Accuracy
type: accuracy
value: 0.9898284802552852
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBerta-finetuned-ner
This Name Entity Recognition model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0605
- Precision: 0.9502
- Recall: 0.9605
- F1: 0.9553
- Accuracy: 0.9898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0248 | 1.0 | 1756 | 0.0636 | 0.9474 | 0.9547 | 0.9510 | 0.9885 |
| 0.014 | 2.0 | 3512 | 0.0734 | 0.9483 | 0.9578 | 0.9530 | 0.9886 |
| 0.0124 | 3.0 | 5268 | 0.0605 | 0.9502 | 0.9605 | 0.9553 | 0.9898 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1