|
--- |
|
tags: |
|
- ultralyticsplus |
|
- yolov5 |
|
- ultralytics |
|
- yolo |
|
- vision |
|
- object-detection |
|
- pytorch |
|
- awesome-yolov8-models |
|
- indonesia |
|
- layout detector |
|
|
|
model-index: |
|
- name: hermanshid/yolo-layout-detector |
|
results: |
|
- task: |
|
type: object-detection |
|
|
|
metrics: |
|
- type: precision |
|
value: 0.979 |
|
name: [email protected](box) |
|
inference: false |
|
--- |
|
|
|
# YOLOv5 for Layout Detection |
|
|
|
|
|
## Dataset |
|
Dataset available in [kaggle](https://www.kaggle.com/datasets/hermansugiharto/book-layout) |
|
## Supported Labels |
|
```python |
|
["caption", "chart", "image", "image_caption", "table", "table_caption", "text", "title"] |
|
``` |
|
|
|
## How to use |
|
- Install library |
|
|
|
`pip install yolov5==7.0.5 torch` |
|
|
|
## Load model and perform prediction |
|
```python |
|
import yolov5 |
|
from PIL import Image |
|
|
|
model = yolov5.load(models_id) |
|
|
|
model.overrides['conf'] = 0.25 # NMS confidence threshold |
|
model.overrides['iou'] = 0.45 # NMS IoU threshold |
|
model.overrides['max_det'] = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
image = 'https://huggingface.co/spaces/hermanshid/yolo-layout-detector-space/raw/main/test_images/example1.jpg' |
|
|
|
# perform inference |
|
results = model.predict(image) |
|
|
|
# observe results |
|
print(results[0].boxes) |
|
render = render_result(model=model, image=image, result=results[0]) |
|
render.show() |
|
|
|
``` |
|
|
|
|