resultmbert2mbert

This model is a fine-tuned version of malmarjeh/mbert2mbert-arabic-text-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8701

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.551 0.4263 500 1.0592
1.1939 0.8525 1000 0.9787
1.0979 1.2788 1500 0.9425
1.0436 1.7050 2000 0.9134
1.0132 2.1313 2500 0.9038
0.9645 2.5575 3000 0.8905
0.9608 2.9838 3500 0.8857
0.9526 3.4101 4000 0.8931
0.96 3.8363 4500 0.8838
0.9254 4.2626 5000 0.8804
0.9023 4.6888 5500 0.8724
0.884 5.1151 6000 0.8754
0.8496 5.5413 6500 0.8656
0.85 5.9676 7000 0.8653
0.8076 6.3939 7500 0.8668
0.8119 6.8201 8000 0.8655
0.7953 7.2464 8500 0.8676
0.7719 7.6726 9000 0.8656
0.7657 8.0989 9500 0.8710
0.7446 8.5251 10000 0.8694
0.7524 8.9514 10500 0.8658
0.729 9.3777 11000 0.8699
0.7338 9.8039 11500 0.8701

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
207M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hiba2/resultmbert2mbert

Finetuned
(1)
this model