LLaMA-2 70B AQLM 2-bit QLoRA with function calling
This model is fine-tuned from BlackSamorez/Llama-2-70b-AQLM-2Bit-1x16-hf using LLaMA Factory.
The maximum GPU usage during training is 24GB, and the model has preliminary conversation and tool-using abilities.
It requires at least 20GB GRAM at inference.
Training and evaluation data
This model is fine-tuned using 2,000 examples of the Alpaca-GPT4 and Glaive-function-calling-v2 datasets.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("hiyouga/Llama-2-70b-AQLM-2Bit-QLoRA-function-calling")
model = AutoModelForCausalLM.from_pretrained("BlackSamorez/Llama-2-70b-AQLM-2Bit-1x16-hf", torch_dtype="auto", device_map="auto")
model = PeftModel.from_pretrained(model, "hiyouga/Llama-2-70b-AQLM-2Bit-QLoRA-function-calling")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{
"role": "system",
"content": (
"You have access to the following tools:\n"
"> Tool Name: get_current_weather\nTool Description: Get the current weather in a given location\n"
"Tool Args:\n"
" - location (string, required): The city and state, e.g. San Francisco, CA\n"
" - unit (string): should be one of [\"celsius\", \"fahrenheit\"]\n\n"
"Use the following format if using a tool:\n"
"```\n"
"Action: tool name (one of [get_current_weather]).\n"
"Action Input: the input to the tool, in a JSON format representing the kwargs "
"(e.g. ```{\"input\": \"hello world\", \"num_beams\": 5}```).\n"
"```\n"
)
},
{"role": "user", "content": "What is the weather like in Boston?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs, streamer=streamer)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Benchmark results
MMLU Benchmark | Bits | Metric | Accurary |
---|---|---|---|
Average | 2 | 5-shot, top-1 | 62.38 |
STEM | 2 | 5-shot, top-1 | 51.57 |
Social Sciences | 2 | 5-shot, top-1 | 73.44 |
Humanities | 2 | 5-shot, top-1 | 57.82 |
Other | 2 | 5-shot, top-1 | 68.56 |
Framework versions
- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
- Downloads last month
- 7
Model tree for hiyouga/Llama-2-70b-AQLM-2Bit-QLoRA-function-calling
Base model
ISTA-DASLab/Llama-2-70b-AQLM-2Bit-1x16-hf